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ON THE EVALUATION OF POWERS*

ANDREW CHI-CHIH YAOfY

Abstract. It is shown that for any set of positive integers {n,,n,, -, n,}, there exists a procedure
which computes {x",x"™, ---,x"} for any input x in less than lgN + ¢ YF. | [lgny/lglg(n; + 2)]
multiplications for some constant ¢, where N = max; {n;}. This gives a partial solution to an open
problem in Knuth [3, §4.6.3, Ex. 32] and generalizes Brauer’s theorem on addition chains.
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1. Introduction. An addition chain (of length r) is a sequence of r + 1 integers
dg,ay,dy, -+, a, such that (i) a, = 1 and (i) for each i, g; = a; + g, for some
J = k< Itis clear that, for any r and any set of integers {n;,n,, -, n,},
there exists an addition chain of length r which contains the values n,n,, --- , n,
if and only if there exists a procedure which, for any input x, computes {x", x", - - - ,
x""} in r operations using only multiplications. A theorem by Brauer [1], [3,
pp. 398-418] states that, for any n, there exists an addition chain of length!
Ign + O(lg n/lglg n) which contains the value n; this implies the existence of a
corresponding procedure to compute x" in 1gn + O(Ig n/lg lg n) multiplications.
Furthermore, it was shown by Erdos [2], [3, pp. 398—418] that the above result is
asymptotically with probability 1 nearly the best possible. In an open problem
posed in Knuth [3,§ 4.6.3, Ex. 32], it is asked if there are fast procedures to compute
{x™,x", ..., x"} for p = 2. This problem cannot be solved by a direct extension
of the technique used by Brauer in the proof of his theorem.

In this paper we show that for any positive integers n,,n,, -+, n,, there
exists a procedure using only multiplications which, for any input x, computes
{x™,x", ..., x"} in I|g N + constant x Y F_ [Ign/lglg(n; + 2)] multiplications
where N = max; {n;}. This gives a solution to Knuth’s problem and leads to a
corresponding theorem on addition chains which generalizes Brauer’s theorem
mentioned earlier.

2. Definition. Let ¢;, 1 < i< p, and f;, 1 < j < ¢, be positive integers.
We shall say that {x°!, - - -, x°?} is computable from {x'*, - - -, x4} in r multiplica-
tions (r 2 0) if there exists a set of r positive integers, {f;,, -, f,+,}, such
that

(i) foralli=qg+1,---,q+r,
x/t = xTi.x/ for some j < k < i.

(ll) {xel, e xep} - {xf1, e Xf‘”’},
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Since the exponents are added when two powers of x are multiplied, the
above definition is a natural generalization of the definition of addition chains
(cf. § 1). The exponents appearing in {x/", - - - , x/4} correspond to a set of numbers
initially available in the chain, as opposed to a single number, 1, in the earlier
definition.

3. The computation of {x", - --, x"}. The following lemma is well known
(3, pp. 398-418).

LEMMA 1. For any integer i > 0, {y'} is computable from |y} in at most 2|1g i]
multiplications.

Proof. Let the binary representation of i be

(1) i=Y b2,
j=0
where v = |lgi]. Then,
i 27
y = yo .
(2 b,ll
Thus, we can first compute y?, y* 8, - y?* sequentially in v multiplications

and then compute y* by (2) in no more than v multiplications. The total number
of multiplications is no greater than 2v. (]
THEOREM 2. For any integers m, n where 0 < m < n, {x™} is computable from

{x,x% x* x5, .-, x>"*"} in less than clgn/lglg(n + 2) multiplications for some
constant c.
Proof. Assume n = 4. Define the following quantities:
A3) k = [(glgn)/21,
(4) D =2,
5) t = |logpnl,

Let the D-ary representation of m be

t

m= Y aD,
j=0
where
(6) Oéang_l fOI‘j:O,],’t

We partition the set of integers {0, 1, - - - , t} into D disjoint subsets S(0), S(1), - - -
S(D — 1) by letting

S(@) = {la, =i} fori=0,1,---,D —1.
It follows from (6) that

D-1 D—-1
™ _— i.[z Df] =% im,

i=1 1eS(i)
where

(®) m; = z D'

1eS(i)
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From (7) and (8), we obtain the following two equations:

9) xm = [] x* fori=1,2,---,D—1,
leS()
D1 .

(10) xm =[] (x™).

Since all the x' in (9) are available in the set {x,x?, x* x5, ... x*"*"},

we can construct a procedure to compute x™ as follows.
Step 1. Fori=1,2,---, D — 1 do the following:
(a) Compute x™ from (9) in fewer than |S(i)] multiplications.
(b) Compute (x™)" in at 'nost 2|lg i) multiplications (by Lemma 1).
Step 2. Compute x™ from (10) in D — 2 multiplications.
Let M be the total number of multiplications in the above procedure. Then,

D—1
M < Y (80G) +2(gi))+ D —2

(11 =l

D-1

< Y ISG) +2(D - lg(D—1)+D —2.

i=1
Noting that the S(i)’s form 1 partition of the set {0, 1, - - - , t}, we obtain from (11)
that
(12) M<t--1+2D-1)Ig(D-1)+D -2,
which together with equat ons (3), (4) and (5), implies that
(13) M < 2(gn/ltlgn) + 1 + 4(lgn)t/?1glgn + 2(1gn)'/>.
It follows from (13) that tl.ere exists a constant ¢ such that
(14) M < clgn/iglg(n + 2).

Thus the theorem is true if n = 4. Obviously we can choose ¢ so that the theorem
is also true forn = 1,2,3. 0O

THEOREM 3. For any szt of positive integers {ny,n,, - -+, ny}, {x", x", .-, x"}
is computable from input |x} in less than 1gN + ¢ Y ¥ [Ign/lglg (n; + 2)] multi-
plications for some constant ¢, where N = max; {n;}.

COROLLARY. {Xx"!,x"2, ..., x"} is computable from {x} in less than lg N
+ cplg N/lglg (N + 2) nwltiplications.

Proof of Theorem 3 and Corollary. First we compute {x, x? x* x5 ...,
x?!'"8N} from input x in |'g N | multiplications. For each i, according to Theorem 2,
x" is computable from {x, x% x*, ---, x?"#VM} in ¢ lg N/Iglg (N + 2) multiplica-
tions for some constant ¢. The theorem and corollary then follow immediately. [

In terms of addition chains, Theorem 3 and its corollary give the following
generalization of Brauer’s theorem [1], [3, pp. 398-418].

THEOREM 4. For any positive integers n,,n,, - -+, n,, there exists an addition
chain of length less than 1gN + ¢ Y7 lgn/lglg(n; + 2) containing the values
ny,ny, -+, n, for some constant ¢, where N = max; {n;}.

COROLLARY. For positive integers ny,n,, ---, n,, there exists an addition
chain of length less than 1g N + cplg N/Iglg (N + 2) containing n,,n,, ---, n,.



Downloaded 11/11/15 to 136.152.142.34. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

ON THE EVALUATION OF POWERS 103

4. Conclusion. We have shown that {x"!, x", ---, x"} can be computed in
lgN + cplg N/lglg(N + 2) multiplications for input x where N = max; {n;}
and c is a constant. On the other hand, it is well known that to evaluate {x",
x", ..., x"} by arithmetic operations, at least lg N operations are necessary.
Thus our procedures for evaluating {x"!, x", - - -, x"»} are nearly the best possible
when p « Iglg(N + 2). It remains an interesting open problem to determine the

complexity of computing {x", x"2, - - -, x"»} for general p.

Note added in proof. (A) By choosing the value of k in (3) more carefully, say
k= [lglgn — 31glglgn], our algorithm in Theorem 3 takes at most lg N
+plg N/lglg N + (smaller terms) multiplications as N — oo. For fixed p, these
leading terms are almost the best possible since, as observed by Larry Stockmeyer
(private communication), the lower bound of Erdds [2] can be generalized straight-
forwardly. (B) Nicholas Pippenger proved the following (private communication):
{x",x", ..., x"»} can be computed from x in min {(p + 2')[1g N/I1| | is a positive
integer} multiplications, and for some c¢; > 0 and every N,p, c,plg N/IgP
+ Iglg N) multiplications are needed for some set of {n,,n,,---,n,} with
max {n;} < N. For large p (p = Ig N), this determines the worst-case complexity
to be plg N/lg p up to a constant factor. (C) A related theorem on power evalua-
tion may be found in Schénhage [4].
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