January 1985 Report No. STAN-CS-85- 1038

Uniform Hashing is Optimal

by

Andrew C. Yao

Department of Computer Science

Stanford University
Stanford, CA 94305




Uniform Hashing Is Optimal

Andrew C. Yao
Computer Science Department
Stanford University
Stanford, California 94305

Abstract. It was conjectured by J. Ullman that uniform hashing is optimal in its expected retrieval
cost among all open-address hashing schemes (JACM 19 (1972), 569-575). In this paper wc show
that, for any open-address hashing scheme, the expected cost of retrieving arccord from alarge

tablewhichisafractionfull isat least 1 log 25 + o(1). This proves Ullman’s conjecture to be
true in the asymptotic sense.
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1. Introduction.

Hashing is a frequently used technique for storing and retrieving records maintained in the
form of atable. In open-address hashing, the “key” of each record is mapped by a hashing function
to a sequence of table locations, and records are inserted and retrieved by following this sequence.
In particular, uniform hashing employs a hashing function that maps keys into random permutations.
For uniform hashing, it is known [2] that the expected cost of inserting a new key into a table
o-fraction full isessentially equal to 1, for alarge table, while the expected cost of retrieving a
record in the table ist cssentially 1 log 5.

In 1972, Ullman [4] raised the optimality question of hashing function, and defined a
mathematical model for discussing it. He showed that, in terms of the expected insertion cost
of a new key, no hashing function can have a lower cost than the uniform hashing function ail the
time; he al so exhibited a hashing function that performs better than uniform hashing some of the
time. Ullman conjectured that, in terms of the expected retrieval cost, uniform hashing is optimal all
the time. The main theorem of the present paper establishes Ullman’s conjecture in the asymptotic
sense, namely, theretrieval time using any hashing function isat least 2 log 1 + 0(1).

Knuth [3] raised a weaker conjecture that, anong single-hashing functions, which form a
restricted family of hashing functions, none can perform substantially better than the performance
bounds of a random single-hashing function. That conjecture was proved by Ajtai, Komlbs, and
Szemerédi[1]. The proof of our main theorem is based on an adaptation of the approachdeveloped
in [1]. interested readers may refer to [1] for more discussions on the intuition behind this approach.

2. Terminology.

A model for studying the optimality of hashing functions was first formulated by Ullman [4].
We summarized the essential definitions below, with some dight changes in terminology.

Consider atable of M locations, where M is any positive integer. Let @ ,s be the set of al
permutations of {0,1,2,..., M — 1). A hashing function h assigns each key K a permutation
h(K)=1,1,--® IM€EQ. Ininserting akey K into the table, we try locationss,, 75, . . . In
turn until an empty dot is found, where K is then inserted; the insertion cost is measured by the
number of locationstried until an empty slot isfound. Now, suppose a sequence of N keyshave
been inserted, where 1 < N < M; let T be the resulting hash table. Toretrieveakey K inT,
the rule is again to try in sequence the locations i, 5, . . . as given by h(K), until K is found;
the retrieval cost isthe number of locations tried.

An (N, M)-scenario p isasequence (01, 02,...,0x) Where each o, € Q. Let T, be the
table obtained when ascquence of N keys Ky, K, . . ., Kn have been inserted, with h(K;) =

tin this paper all the logarithms arc in the natural base e.



0;. Denote by A(K;, T,) the retrieval cost if K; isto be retrieved from T, and let Ax(T,) =
ﬁ c 1<i<NA(Ki’ T,,).

To analyze the performance of a hashing function, Wc simply identify each hashing function
h with a probability distribution p, over @,,. Consider a random (N, M)-scenario p =
(01,09,...,0n). where each o, € Qs isindcpendently distributed according to py. Let Cp (N —
1, M) be the expected value of A( K, T,,), and C}, (N, M) the expected valuet of Ax(T,).

Uniform hashing corresponds to the distribution py(7) = I/M! for al © € Q. For
this hashing function, it was known (see, e.g. Knuth [2]) that C4(N, M) = 5231 and
CW(N, M) = MY H 1 —Hpy— Ny 1), Where Hg isthe Harmonic number 144 +-. .+ §;

. L 1
for fixed 0 < a = N/M < 1 and N — oo, this gives Cn(N, M) = T—_—a—f-o(l) and

1 1

INn the remainder Of this paper, we will USC a to denote the loading factor N/M, and G s
to denote the set of all hashing functions for tables of size M (i.e., the set of al probability
distributions over @ »s). Our mainresult isthe following theorem.

Main Theorem. For any ¢ > 0, there cxists a constant a, such that the following is true: For all
integers N, M > 1 satisfying e < o < 1 — ¢, and for any hashing function h € G s,

1 a, log M (1)

1—a M

1
CL(N, M) > - log

Also, there exists an absolute constant b such that for all integer M > 1 and any hashing function
h€Guym,
Ch(M,M) > log M — loglog M — b. (2)

A single-hashing function h, in our notation, is a hashing function with p,(7) =1/M for = in
accrtain set {mo, 7y, ..., Tpm—1}, where m, € @ 5 Starts with 7, and px(7) = 0 otherwise. Ajtai
et. a. {1] proved that (1) and (2) arc true when h is a single-hashing function.

3. Proof of the Main Theorem.
- 3.1. Reductions.

Let uscall ahashing function h € Gas regular if py(7) £ O for every m € Q. TO prove
the Main Theorem, we need only to demonstrate that inequalities (1) and (2) hold for all regular
hashing functions h, for some constants a, and b, because the quantity C%, (N, M) is a continuous
function (in fact a polynomial) in the M! variables {px(7)| 7™ € Qar}.

Suppose that M, N (1< N < M) arc given, and that d is any intcger with 1. <d < N.
Let h € G\ be any regular hashing function. For any intcger L, arandom (L, M)-scenario p =

t1n Knuth [2]. the notation C~isused to denote the insertion cost instead of the retrieval cost. We
follow here the usage in Ullman [4].




(01,02,...,0n5) Will becalled an h-random (L, M)-scenario, if o, are independently distributed
according to ps. Consider theinscrtion of N keys according to an h-random (N, M)-scenario.
Foreachk€{0,1,2,..., M—1}, let v bc the probability that table location k is occupied after
N — d keys have been inserted, and | et §; be the expected number of times location k has been
probed during the insertion process of the N keys. Clearly,

1
C,h(N,M) = N Z 6k) (3)
0<k<M
and
N—-d:: Z V.- (4)
0<k<M

Letf(z)= X — e Z(i - d))zf—', where A = -log(l — x). Our main cffort will bein proving

i>d
the following proposition. Roughly speaking, it states that if location k is probed at least once, then
it is likely to have been probed a fair number of times.

Proposition 1. &8, > f(vi) for each k.

The validity of inequalities (1) and (2) (for some constants a, and b) is an analytic consequence
of (3), (4) and Proposition 1, as demonstrated in [1]. We review it below. Without loss of generality,
we can assume that N >[10 log M| > 1. First, observe that f(x) is a convex function (which
can be verified by showing that f* > 0); thisimpliesthat 3, r: f(z:) > f(3, razi) for r, > 0
and ), r; = 1. Then, from (3), (4) and Proposition 1, we obtain

ChN, M) > = 3 f(u)
d<k<M

> %f(zj’(l"")

M (N—d
='ﬁf(7)'

By choosingd =[101og M |, one can show that f ( 2¢) iswell approximated by — log(l- 274);
that is, f(x) = X in this case. The error bounds involved in this approximation are dependent on
N, M and d, but are clearly independent of h. A close examination of the error bounds leads to
incqualities (1) and (2).

It remains only to prove Proposition 1. For the rest of the proof, let k €{0,1, ..., M —1}
be fixed. We shall divide the proof into three parts. In part 1 we give a procedure for generating an
h-random (N, M)-scenario p. Thisprocedure first generates randomly a special type of scenarios
w, called skeletons, and then generates a random p with a distribution dctcrmined by w. In part
2, we derive a lower bound to é; for arandom p gcncratcd by the above procedure when the
skeleton isw. The procedure in part 1 is designed in such away that the derivation of a nontrivial
lower bound is possible for agiven skeleton. In part 3, the lower bound obtained in the previous
part is averaged over w to obtain alower bound to & to give Proposition 1. These three parts are
prcsented in order in the ensuing three subsections.



3.2. Generating a Random Scenario.

Wefirst define some notations. Let 0 < L < M bc any integer. For any (L, M)-scenario
w, partition Qs into two digjoint parts Q[w] and @’[w] as defined below. Consider the table T,
obtained by inserting keys according tow, and let B, C {0, 1, . .. , M — 1} be the set of occupied
positions in 7,,. We put m € Qs into Q[w] if anew key K with h(K) = 7 will occupy position
k when inserted into 7,,; otherwise, let 7 € Q'[w]. In other words, if k € B, then Q[w] = 0;
otherwise, @[w] contains al those 7 of theform ¢y, 4z, ..., %—1, K, te41, . ..,tp With ¢, € B,
for 1 <t < £. For example, when w is the empty string, Q[w] is the set of permutations 7 that
start with k.

For any (L, M)-scenario w = (my, g, . . ., m.), WC Will use w0 to denote its prefix, the
(4, M)-scenario w = (my, 7y, . . ., m;). AN (N — d, M)-scenario w = (my, m2,.. ., mny—q) Will be
called a skeleton scenario, or Smply, a skeleton, if k is not occupied in the table T,,. Note that we
can aternatively define askeleton as an (N — d, M)-scenario for which 7, € @'[wC—1] for all
1<j< N—d

For any noncmpty subset VV C Q as, let py denote the probability distribution obtained when
ph IS restricted to V. Let pa(V) denote 3-, o\, p&r), then py(m) = pa(m)/pa(V) for m € V.
Note that p, (V') % 0 for al noncmpty V, since h isaregular hashing function.

We now describe a procedure that generates arandom (N, M)-scenariop =(o1, 03, .. .,0nN).
It will be seen that p isan h-random (N, M)-scenario, that is, ¢, are independently distributed
according to pj. It proceeds in three steps.

ProcedureRANDSCEN;

Step 1: Generate arandom skeleton w = (my, T2, . . . , ™y —q) by SUccessively generatingmy, s, . . .,
each new 7, is randomly chosen from@’[w® — 1] according to the probability distribution
pv,, where V, = @'[w0 ).

Step 2: For each 1 <j < N — d, generate first an integer r, > O distributed geometrically with
probability v, , = pa(@wYY)), that is, Pr{r, = i} = (1 — u, ;)(uw,)*; generate
arandom (r;, M)-scenario w, = (1, 7j2, . . ., Ty,,,). Where each ; ; is randomly and
independently chosen from W, = Q[w!—1] distributed according to pw,.

Step 3: Let r = ElSJ’SN—d ryand x = (wy, M1, wo, Ma,. . ., WN—d, TN—4). If 7 > d,
then let p be the (N, M)-scenario x(™); otherwise, generate d — r additional random
ON—(d—r)+1> ON—(d—r)+2; . -» O N, €8Ch chosen independently from @ s according to
distribution px, and let p bc (X, O N —(d—r)+-1) ON—(d—r)+21 - - - s ON)-

End RANDSCEN.
Note that as h isregular, p(m) 7 O for every m € @ s, Which implics u,, , = pa(Q[wU—V]) <

1 instep 2 of the above procedure. Thus, the distribution for 75, Pr{r; = i} = (1 — uy, ;)(t%s ;)*
is well defined.



Lemma 1. The p generated by RANDSCEN is an h-random (N, M)-scenario.

Proof. Let n =(n1, 72, . . . ,nn) beany (N, M)-scenario . We will prove that for arandom p
generated by RANDSCEN, Pr{p =n}iscqual to]], ., < 5 Pr(7:). Thisimmediately implies the
lemma.

Writen as(w}, T}, wh, T, . . ., w}, ), wj ;). such that !, € @'[mim5. . ' Jfor 1<j <
t andt w} € Q[rimy. . .w)_,]* for 1<j <t + 1 Itiseasy tosce that this representation
is unique.  Let uswrite w! = (my, mhy, ..., m ) for 1 <j <t + 1, where each 7}, €
Q[mymy.. ., _4]; v, may be 0. Define z, = pa(Z;) for 1 < j <t + 1, where Z; =
Qmymy. .. mi_y].
Cae1) 0<t<N-—d.

Let X, be the event that in step 1, m, = ', for 1 < j < t, X, be the event that in step 2,
w; = wjfor1<j <t and X3 betheevent thatinstep 2 r; 4y 2>r's41and w;‘:ﬂ*{‘) = whyy
It is easy to see that RANDSCEN will generate p = # if and only if events Xy, X, X3 all occur.
Due to the the independence of X, and X35, we have

Pr{p . 7]} . PI‘{Xl} . Pl‘{Xz,Xg, I Xl}
= Pr{Xl} . PI‘{Xz | Xl} . PI'{X3 | X1}.

An elementary probabilistic calculation shows that

pr(m5)
PriXy} = H 11—z’
1<5<t
PR
Pr{X, X1}- H ((1 — z;)(2;)" 2 )
1<5<t 1<i<r 7
= H ((1 — z) pr(m; ):
1<5<¢ 1<)

and ,
Ph(ﬂt+1,.‘)
Pr{X3 | X1} =Pr{rp > riyy | X0} [ ————
1<i<r! Zt+1
ST

pa(m ,s)
= = an) ¥ (ar) [[

e>r 1<ide,,, At

= H Ph(”i-}-x,i)-

1<i<r
The above formulas lead to

Pip=m= ] (ph(w;) I ph(vr;,a) I ey

1<5<t 1<iLr) 1<i<ry,
- I ew(m).
1<i<N

tFor any set D, the notation D™ will stand for the sct of al finite sequences of clements in D
(including the empty scquence).



Case2) t >N — d.

Let X} be the event that in step 1, m; = n% for 1 <j < N — d, X, be the event that
instep 2, w, = w) for 1 <j <N —d, and X3 betheeventthatinstep3on_(4—ry) 1=
NN—(d—r)+1ON—(d—r")+2 = IN—(d—r")+2;-. . , ON = N, Where r’ = Eigj'SN—dT;"
As in case 1, RANDSCEN will gencrate p = 7 if and only if events X, X5, X5 all occur. A
calculation similar to that in case 1 givesPr{p =1} =[], <; < n Pr{m:). This completesthe proof
of Lemmal.j

3.3. Lower Hound on &, for Skeleton w.

Suppose p is an (N, M)-scenario generated by RANDSCEN, with » being the parameter
generated in step 2 during the process.

Lemma 2. Let s(p) be the number of times that table position k is probed during the insertion
of N keys according to p. Then s(p) > min{r, d}.

Proof. Write p = (wy, 71, w2, T2, . . . ) With w; = ) 17m52- . . 7y, in the notation of procedure
RANDSCEN. It is easy to see that each insertion that corresponds to a m;, in p will probe location
k intheinsertion process, since even if we omit all the insertions ., that precedeit in p, this
insertion will still probe location k. As the total number of m,, in p is equal to min{r, d}, the
lemma follows.1

Imagine that we follow the stepsin RANDSCEN to generate an h-random (N, M )-scenario
p. Wc wish to analyze this process of generating p to estimate the expected value of min{r, d};
then Lemma 2 will provide a needed lower bound since & is the expected value of s(p).

Consider the execution of RANDSCEN as a stochastic process. Let (2 denote the random
variable corresponding to w in Step 1, R, denote the random variable for r,instep 2, and R =
21 <, <N—a R, Let Sdenote the random variable corresponding to s(p) defined in Lemma 2.
Clearly,

6 = E(S). (5)

We aso introduce some scalars. Let ¢, = Pr{Q = w} for skeleton w; let u,,, denote
Pr(Q[wlY—V]) asdefined inStep 2 of procedure RANDSCEN.

Our approach isto analyze the expected vaue of min{r, d} for fixed w, and then average over
w. From Lemma 2, we obtain
E(5|Q =w) > E(min{d, R} | @ = w)
Y PR >i| Q= w}

1<i<d
= Y P{R“ > i), (6)
1<i<d
where R = Z R%‘” )with Ré‘" ) being the random variable R, restricted to the probability

1<j<N—d
space specified by @ = w. As Rgf"), 1 <j <N — d, arc indcpendent variables with distribution
Pr{R® =i} = (1 — uy ;)(tw ;). the following analytic result from Ajtai ct.al. [1] applies.




Lemma 3. [1] Suppose Y = 3, <. Y where Y, Ya,. . . ,Y, are independent ran-
. . N : M
dom variables with Pr{Y, = ¢} = (1 — y;)(y;)'. Then Pr{Y >d} >e> )" 5 where

> v
A= -Iog( II (1—-y,~)).

1<5<a
Proof. See [1]. &

From Lemma 3 and (6) we have

{4
ES|Q=w)> > e ) (xtf‘;)

1<i<d >4
_ M)t
=y —e xwz:(z—d)( e!) . (1)
£>d

where ), = — Iog( II o- ,uw,,-j)_
1<j<N-—d
3.4. Completing the Proof.

Consider again arandom p gencrated by RANDSCEN. Let A be the random variable that is
equal to 1 if location k is occupied in T,~—« and O otherewise; let A,,, denote A restricted to the
situation ) = w.

For any skeleton w, it is easy to check from the definitions that

1 —Pr{As = 1} =Pr{ R‘“’—_— 0}

= H (1 - ,uw,j)' (8)
1<7j<N—d
It followsfrom(7), (8) that
E(S |0 =w) > f(Pr{A, = 1}). (9)

Using (5), (9) and the convexity of f, we obtain
k=) LBE(S|Q=w)
> S A3 & Pr{A, = 1))

= f(Pr{a = 1))
= f(vk).

This proves Proposition 1 and hence the Main Theorem.

4. Concluding Remarks.

In thispaper wc have shown that uniform hashing is asymptotically optimal inretrieval cost.
Can onc prove that uniform hashing is also asymptoticaly optimal in the insertion cost al the time?



More precisely, can onc prove that for any fixed 0 < a < 1, Cx(N, M) = $—_—"& + o(1) for al
h?
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