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Abstract

We investigate read-once branching programs for the
following search problem: given a Boolean m × n ma-
trix with m > n, find either an all-zero row, or two 1’s
in some column. Our primary motivation is that this
models regular resolution proofs of the pigeonhole prin-
ciple PHPmn , and that for m > n2 no lower bounds
are known for the length of such proofs. We prove ex-
ponential lower bounds (for arbitrarily large m!) if we
further restrict this model by requiring the branching
program either to finish one row of queries before ask-
ing queries about another row (the row model) or put
the dual column restriction (the column model).

Then we investigate a special class of resolution
proofs for PHPmn that operate with positive clauses
of rectangular shape; we call this fragment the rectan-
gular calculus. We show that all known upper bounds
on the size of resolution proofs of PHPmn actually give
rise to proofs in this calculus and, inspired by this fact,
also give a remarkably simple “rectangular” reformula-
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tion of the Haken-Buss-Turán lower bound for the case
m� n2. Finally we show that the rectangular calculus
is equivalent to the column model on the one hand, and
to transversal calculus on the other hand, where the lat-
ter is a natural proof system for estimating from below
the transversal size of set families. In particular, our ex-
ponential lower bound for the column model translates
both to the rectangular and transversal calculi.

1 Warm Up

The following elementary “data structure” problems,
which may be contemplated as independent puzzles by
the reader, are the axis connecting the different notions
in the title of the paper. Consider algorithms which
probe, once, the entries of an input array A in an ar-
bitrary adaptive order, and use s bits of memory. Let
m > n. What is the smallest memory size s = s(n,m)
needed for solving the following problems?

• When A ∈ [m]n, find a number in [m] missing from
A.

• When A ∈ [n]m, find two entries A containing the
same number from [n].

2 Introduction

Complexity of propositional proofs is rapidly becom-
ing to play as important a role in the theory of feasible
proofs as the role played by the complexity of Boolean
circuits in the theory of efficient computations. And the
resolution proof system introduced in [Bla37] and fur-
ther developed in [DP60, Rob65] is one of the first and
simplest in the hierarchy of propositional proof systems;
it is also of invaluable importance for various automatic



theorem proving procedures. Tseitin [Tse68] proved, al-
most 30 years ago, the first exponential lower bound for
regular resolutions (these are resolutions with the addi-
tional restriction that along every path every particular
variable can be resolved at most once).

However, despite its apparent (and deluding) sim-
plicity, the first lower bounds for non-regular resolu-
tions were proven only in 1985 by Haken [Hak85].
These bounds were achieved for the pigeonhole prin-
ciple PHPn+1

n asserting that (n+1) pigeons can not sit
in n holes so that every pigeon is alone in his hole. Mo-
tivated by a separation problem in Bounded Arithmetic
(just like the research on the complexity of Boolean cir-
cuits is motivated by needs of the theory of Turing com-
putations!), Buss and Turán [BT88] extended his bound
to exp

(
Ω
(
n2

m

))
for more general form PHPmn of the

pigeonhole principle in which the number of pigeons,
m is another parameter. See also [Urq87, CS88, BP96]
for other bounds on the complexity of resolutions, and
[Juk96] for a generalization of the Haken-Buss-Turán
bound to the case of semantic resolutions.

All these bounds trivialize when m ≥ n2, and all
lower bounds techniques discovered so far become void
with that many pigeons. As mentioned in [BT88] (see
also [Kra94, page 31]) it is an open question whether
PHPn

2

n has a poly-size resolution proof, and this is open
even for regular resolutions. More generally, it is open
whether there is any m (as a function of n) for which
PHPmn has a resolution proof of size polynomial in n.
The only non-trivial upper bound is due to Buss and
Pitassi [BuP96]: PHPmn has a resolution proof of size
exp(O(

√
n log n+ n log n/ logm)).

In this paper we take the first partial steps toward
resolving the above question in the negative (at least
for regular resolutions). The meaning of our results be-
comes, however, clearer if we employ the characteriza-
tion of regular resolutions in computational terms (see
e.g. [Kra94, Theorem 4.2.3]). Namely, regular resolu-
tions are known to be equivalent to read-once branching
programs (b.p.) solving the following search problem:
given a truth assignment, find some initial clause falsi-
fied by this assignment.

For the special case when the search problem (i.e.
the initial clauses) corresponds to PHPmn , we introduce
two restricted classes of read-once b.p. and call these
computational models the row model and the column
model. In the row model (with rows corresponding to
pigeons) the (read-once) b.p. must query all variables
from some row immediately after it queries the first such
variable. The column model is defined dually.

We prove a tight exp(Ω(n log n)) size lower bound in
the row model and an almost tight bound exp(Ω(

√
n+

n/ logm)) in the column model; note that they make
perfect sense for m = ∞. The proofs for both models

have one remarkable feature in common that is some-
what novel for research of this kind (in fact, it is this
feature that allowed us to overcome the n2 barrier). As
in many similar proofs we do construct a distribution on
inputs that fools branching programs from some class.
But (and this is the novelty) our distributions essen-
tially depend on the program being fooled, and are being
constructed along with the progress of computation itself.

Both the obvious 2O(n)-sized resolution proof of
PHPmn and the Buss-Pitassi proof mentioned above can
be restructured to operate with positive clauses of rect-
angular form only. Inspired by this fact, we introduce
the corresponding rectangular calculus (a subclass of res-
olution proofs for PHPmn ), and show that both these
proofs can be carried out there. We have failed to sim-
ulate arbitrary resolution proofs of PHPmn in this cal-
culus, and we doubt that such a simulation is possible
(it actually seems that already the row model cannot be
reduced to the rectangular calculus). However, in per-
forming this task we have succeeded enough to “sim-
ulate” there the Haken-Buss-Turán lower bound: the
“rectangular” version of their proof is remarkably sim-
ple and may be of independent interest.

Interestingly, it turns out that the rectangular cal-
culus is equivalent to the column model. This al-
lows us to translate the Buss-Pitassi upper bound
exp(O(

√
n log n+n log n/ logm)) to the column model,

and our exp(Ω(
√
n+ n/ logm)) lower bound in the col-

umn model to the rectangular calculus; these bounds are
matching up to a logarithmic factor in the exponent.

From the complexity-theoretic perspective, the set of
all propositional tautologies TAUT is just one of natu-
ral co-NP-complete sets, even if it was historically the
first. For any such set we can raise the question of
what are natural (i.e., coherent to the intrinsic struc-
ture of the set) proof systems for membership proving,
and then ask how do proof systems for different sys-
tems compare to each other in terms of their strength
via natural reductions. While natural proof systems for
the co-NP-complete sets corresponding to the INDE-
PENDENT SET and CHROMATIC NUMBER prob-
lems were defined and studied by Chvatal [Ch77] and
McDiarmid [Mc79] respectively, no relations between
the power of these systems and others are known. Re-
ductions were systematically studied only for the differ-
ent systems for TAUT (which, in our opinion, is to a
large extent caused by historical and psychological rea-
sons). The only nice exception we are aware of are Hajós
calculus for the set of non-3-colourable graphs [Haj61],
and the proof of its equivalence to Frege systems [PU92].

We contribute to this line of research by defining a
natural (sound and complete) proof system for proving
lower bounds on the transversal (hitting set) size of set
families (dual to the SET COVER problem). We call
this system the transversal calculus and show it to be



equivalent to the rectangular calculus. In particular, all
upper and lower bounds for the column model and for
the rectangular calculus immediately translate to the
transversal calculus.

The paper is organized as follows. In Section 3 we re-
call some necessary notation and definitions. In Section
4 we present our lower bounds for the row and column
models. Section 5 is devoted to the rectangular calculus
(including our reformulation of the Haken-Buss-Turán
bound), and Section 6 to the transversal calculus.

3 Preliminaries

Let p1, p2, . . . , pn, . . . be propositional atoms. A lit-
eral is either an atom or the negation (¬p) of an atom
p. A clause is a set of literals, to be thought of as the
disjunction of participating literals. A clause is positive
if it does not contain negated literals. The resolution
system is the propositional proof system that operates
with clauses and has one rule of inference

C1 ∪ {p} C2 ∪ {¬p}
C

(C1 ∪ C2 ⊆ C)

called the resolution rule. We say that the atom p is
resolved in this application of the resolution rule. A
resolution proof is a proof in the resolution system. A
resolution refutation of a set of clauses is a resolution
proof of the empty clause from this set.

Throughout this paper we allow straight-line proofs
(as opposed to tree-like), i.e., after a formula is inferred,
it can be used arbitrarily many times in further infer-
ences. The size of a proof is the number of clauses in
it.

A resolution proof is regular if along every path from
an axiom to the final clause every atom is resolved at
most once. For any unsatisfiable set of clauses

C = {C1(p1, . . . , pn), . . . , Ck(p1, . . . , pn)},

let us consider the following search problem SC : given
a truth assignment a ∈ {0, 1}n, find some ν such that
Cν(a) = 0.

Following Borodin and Cook [BC82], we define an
R-way branching program in n variables as a directed
acyclic graph with one source node s (sometimes also
called the root), in which every non-sink node is la-
belled by one of the variables x1, . . . , xn and has ex-
actly R outgoing edges numbered by 1, . . . , R. Let
[R] = {1, 2, . . . , R}. Every input string A ∈ [R]n deter-
mines a computational path comp(A) from s to a sink
node. An R-way b.p. (branching program) solves some
search problem with inputs from [R]n if its sinks can
be labelled by possible solutions to the search in such a
way that for every A ∈ [R]n, comp(A) leads to a sink
labelled by a solution admissible for the input A.

The size of an R-way b.p. is the total number of
nodes. The logarithm of size corresponds to the space
used by general sequential algorithms.

An R-way b.p. is read-once if along every path p
every variable is tested (i.e. appears as a node label)
at most once. Let X(p) be the set of variables that are
tested along some path p. A read-once b.p. is uniform
if:

a) for a path p beginning at the root s, X(p) depends
only on the terminal node v of p (accordingly, we
denote it by X(v));

b) for every sink t, X(t) contains all variables.

If, moreover, the variables are tested in the same order
along every path (i.e., X(v) depends only on the depth
of v defined as |X(v)|), the uniform program is called
oblivious.

Uniform read-once R-way b.p. possess the nice prop-
erty that every path from the root to a sink node is the
computational path comp(A) for an uniquely defined
input A ∈ [R]n; therefore we can identify inputs with
such I/O paths. On the other hand, [Oko91] noticed
that uniformity is not actually a serious restriction:

Proposition 3.1 Every R-way read-once b.p. in n
variables can be simulated by an equivalent uniform pro-
gram whose size is larger by at most a factor of n.

It is not known whether a similar simulation is in general
possible by oblivious programs.

The following remarkable result is apparently the
only known case of an equivalence between a propo-
sitional proof system and a computational model (we
omit the prefix “2-way” in the case of ordinary binary
programs):

Proposition 3.2 Let C be an unsatisfiable set of
clauses. Then the minimum size of any regular reso-
lution refutation of C is equal to the minimum size of
any read-once b.p. solving SC.

For the proof see e.g. [Kra94, Theorem 4.3] (cf. also
the proof of Theorem 5.4 below).

Definition 3.3 ¬PHPmn is the following set of clauses,
over the (m× n matrix of) atoms pij :

{¬pi1,j ,¬pi2,j}(i1, i2 ∈ [m], i1 6= i2; j ∈ [n]); (1)
{pi1, pi2, . . . , pin}(i ∈ [m]). (2)

Clearly, ¬PHPmn is unsatisfiable for m ≥ n + 1.
Hence it possesses resolution refutations that we will
sometimes call resolution proofs of PHPmn . In the ma-
trix representation1, an admissible solution of S¬PHPmn

1Note that this is a transpose of Haken’s original representa-
tion from [Hak85]. The reason for implementing this change is
that at the moment it has become more customary to use the
notation in which the first index i corresponds to the largest of
the two numbers m,n (most often m), and that would be highly
confusing to let it also correspond to the columns of a matrix.



is either an identically zero row, or two 1-entries in the
same column. Since we do not consider in this paper
any tautologies other than PHPmn , we assume through-
out that m,n are some integers, m ≥ n + 1, and all
propositional atoms have the form pij , where i ∈ [m]
and j ∈ [n].

Let A be a family of sets (that are subsets of some fi-
nite underlying universe). A set T is called a transversal
of A if it intersects all members of A (i.e., A∩T 6= ∅ for
all A ∈ A). The transversal number τ(A) of the family
A is the size |T | of the smallest transversal T of A.

4 Lower bounds

Many lower bounds in Boolean complexity are based
upon the following transparent idea: define a natural
probability distribution a on inputs2, and show that
every small circuit/program B presumably solving our
problem must err with positive probability on a random
input chosen accordingly to a. In particular, it seems
that all known lower bounds for read-once b.p. (see e.g.
[Weg87, Chapter 14.4], [Raz91] for examples) employ
this idea.

In this paper we bring something fresh to this
method: the distribution aB will not be fixed in advance
but will essentially depend on the program B, and will
be constructed dynamically along with the progress of
the computation. We consider two types of read-once
b.p. for S¬PHPmn : those which must query all variables
from some row immediately after querying the first such
variable, and those satisfying the dual column restric-
tion.

4.1 The Row Model

If a read-once b.p. attempting to solve S¬PHPmn
queries at once all variables from some row, then the
adversary should not respond with all zeros since then
the program can immediately produce an unsatisfiable
clause of the form (2). Conversely, if he follows this rec-
ommendation and never responds with all zeros, then all
clauses (2) will be satisfied, and the result of the search
must be a negative clause of the form (1). Which means
that it is disadvantageous for the adversary to respond
with more than a single one either, and this leads us to
the following model:

Definition 4.1 In the row model, an n-way read-once
b.p. in m variables attempts to output a solution to the
following search problem Rowmn : given an input A ∈
[n]m, find some i1, i2 ∈ [m] and j ∈ [n], where i1 6= i2,
such that Ai1 = Ai2 = j.

2throughout the paper we use the bold face for denoting ran-
dom objects

Clearly, there is an exp(O(n log n))-sized program
solving Rowmn : just ignore all but the first (n+ 1) vari-
ables, and treat every one of nn+1 inputs individually
by a decision tree. Our first result shows that in the
row model we cannot do any better:

Theorem 4.2 Any n-way read-once b.p. in m vari-
ables that solves Rowmn must have size exp(Ω(n log n)).

Proof. We can assume n ≥ 3. Let B be an n-way
read-once b.p. in m variables. For any node v, denote
by J(v) the set of all j ∈ [n] such that for some fixed
variable xi, every path from the root s to v makes the
assignment xi = j. Note that if e = (u, v) is an edge
(directed from u to v), then |J(v)| ≤ |J(u)|+ 1. Let us
call an edge e labelled by j and outgoing of v legal if
j 6∈ J(v) and illegal otherwise.

Claim 4.3 If B solves Rowmn , then there is no path
from the root to a sink consisting entirely of legal edges.

Proof of Claim 4.3. Consider some path p between
the root s and a sink node t labelled by Ai1 = Ai2 =
j. Then p must contain at least two edges labelled by
j. Let e = (v, v′) be the last edge along p with this
property. We are going to show that e is illegal.

Replacing, if necessary, i1 by i2, we may assume that
i1 is not the label of v. Every path from s to v must
make the assignment xi1 = j: otherwise we could com-
bine it with the segment of p beginning at v (keeping in
mind that B is a read-once program), and get a com-
putational s − t path that does not make the assign-
ment xi1 = j, contrary to the assumption that B solves
Rowmn . Hence j ∈ J(v), and e is illegal.

Now we convert B into a finite Markov chain as fol-
lows: the set of states is simply the set of nodes, s is the
initial state, and terminal states are sink nodes along
with those v for which J(v) = [n]. The Markov process
which at any non-terminal state v traverses all outgoing
legal edges with equal probabilities, defines a random
path pB . Claim 4.3 implies that with probability 1 pB
actually arrives at a terminal node v of the second type,
i.e. such that J(v) = [n]. Also, every time the value
|J(v)| increases along an edge in pB , it increases by at
most one. Thus, with probability 1, pB visits some node
v such that |J(v)| = dn/2e. Let v be the first such node
along pB . We are only left to show that for every specific
v0 with |J(v0)| = dn/2e, P[v = v0] ≤ exp(−Ω(n log n))
(and, hence, there must be at least exp(Ω(n log n)) such
v0).

Consider any v0 with J(v0) = {j1, . . . , jdn/2e}, and
let iν (1 ≤ ν ≤ dn/2e) be integers such that ev-
ery path from s to v0 has made all the assignments
xi1 = j1, . . . , xidn/2e = jdn/2e. Clearly, i1, . . . , idn/2e are
also distinct. Then v = v0 implies, in particular, that



before arriving at the node v0, the Markov process pB
must have tested all variables xi1 , . . . , xidn/2e (possibly
in a variable order) and make every time the decision
xiν = jν . Moreover, since v was chosen to be the first
node along pB with J(v) = dn/2e, pB must make these
decisions at nodes v with at least dn/2e outgoing le-
gal edges which implies that, for each ν, the probability
to make the decision xiν = jν is at most 2/n. It fol-
lows from general properties of Markov processes that
P[v = v0] ≤ (2/n)dn/2e ≤ exp(−Ω(n log n)).

The proof of Theorem 4.2 is complete.

4.2 The Column Model

Similarly to the row model, if a read-once b.p. for
S¬PHPmn always queries at once all variables from the
same column, we may assume that it receives in re-
sponse a single one, and this leads us to the following
model that is dual to the row model:

Definition 4.4 Let Columnmn be the following search
problem: given an input A ∈ [m]n (viewed as a func-
tion), find some i ∈ [m] which is not in the image of A.
In the column model, we consider m-way read-once b.p.
in n variables attempting to solve Columnmn .

Unlike the row model, there is a non-trivial upper
bound in this model, and it will be presented in the next
section (see Corollary 5.5). Our lower bound matches it
within a logarithmic factor in the exponent.

Theorem 4.5 Any m-way read-once b.p. in n vari-
ables that solves Columnmn must have size at least
exp(Ω(

√
n+ n/ logm)).

Proof. Firstly we prove the bound

exp(Ω(n/ logm)). (3)

Let B be an m-way read-once b.p. in n variables
solving Columnmn . By Proposition 3.1, we may assume
that B is uniform. For a node v of B denote by I(v) the
set of all i ∈ [m] which are not assigned to any variable
xj ∈ X(v) along any path from the root s to v. Let
us call an edge e outgoing of v and labelled by i legal if
i ∈ I(v) and illegal otherwise.

The dual statement to Claim 4.3 simply says that
I(v) 6= ∅ for every node v. Moreover, I(s) = [m], I(v)
can only decrease along edges, and i ∈ I(t) for every sink
node t labelled by i 6∈ im(A). Define pB by the same
Markov process as in the proof of Theorem 4.2 (with the
new notion of legal edge, of course). The remark above
implies that pB arrives, with probability 1, to a sink
node t. Since B is uniform, pB has length n (w.p. 1).
Let k = dlogme, and s = v0,v1, . . . ,vk = t be nodes

along pB that divide this random path into segments of
length at least bn/kc each.

Since |I(v0)| = m, |I(vk)| ≥ 1 and I(vν) is decreasing
in ν (w.p. 1), we have that for some 0 ≤ ν ≤ k − 1,

|I(vν+1)| ≥ 1
2
|I(vν)|.

Similarly to the proof of Theorem 4.2, we are left to
show that for any specific pair (u0, u1) of nodes with
the properties |X(u1) \X(u0)| ≥ bn/kc, I(u1) ⊆ I(u0)
and |I(u1)| ≥ 1

2 |I(u0)|, we have

P[u0 and u1 belong to pB (in this order)]
≤ 2−bn/kc.

 (4)

This again follows from the general theory of Markov
processes. Indeed, any successful pB can visit between
u0 and u1 only those nodes v for which

I(u1) ⊆ I(v) ⊆ I(u0). (5)

At any such node v, there are |I(v)| outgoing legal edges,
and at most |I(v) \ I(u1)| ways for the Markov process
to maintain the property (5). Thus, the probability to
make the “right” decision at every individual node v is
at most

|I(v)| − |I(u1)|
|I(v)|

≤ 1− I(u1)
I(u0)

≤ 1
2
,

and on its way from u0 to u1 the process must make at
least bn/kc of them. The bounds (4) and (3) follow.

In order to see the remaining bound exp(Ω(
√
n)) on

the size of B, we just remark that if B is an m-way read-
once b.p. of size at most 2

√
n, we can assume w.l.o.g.

that m ≤ 2
√
n: only as many i’s can appear as labels

on sink nodes, and all other i’s can be disregarded. But
now the bound exp(Ω(

√
n)) follows from the already

proven (3).
The proof of Theorem 4.5 is complete.

5 The Rectangular Calculus

For I ⊆ [m], J ⊆ [n], let RIJ denote the positive
clause {pij | i ∈ I, j ∈ J }; we call clauses of this form
rectangular or, if we want to specify sizes, |I| × |J | rect-
angular. The perimeter of a non-empty a× b rectangu-
lar clause is defined as a + b (half of the “geometrical”
perimeter).

As we will see below, rectangular clauses (and espe-
cially those of perimeter (n+ 1)) are of extreme impor-
tance for both upper and lower bounds on the complex-
ity of resolution proofs of PHPmn . This motivates the
study of the following fragment of resolutions that op-
erates with rectangular clauses only and captures that
kind of reasoning.



Definition 5.1 The rectangular calculus is the proof
system that works with rectangular clauses and has one
inference rule

RI1,J1∪{j}, . . . , RIk,Jk∪{j}

RIJ

(I1 ∩ . . . ∩ Ik = ∅, j ∈ [n],
I1 ∪ . . . ∪ Ik ⊆ I,
J1 ∪ . . . ∪ Jk ⊆ J).


(6)

(Intuitively, only one pigeon from I can go to hole j,
and there is no pigeon which is common to all Iν , so at
least one has to go to J .)

A rectangular proof is a proof in the rectangular cal-
culus, a rectangular refutation of a set of rectangular
clauses is a rectangular proof of the empty clause from
this set, and a rectangular refutation of ¬PHPmn (a rect-
angular proof of PHPmn ) is a rectangular refutation of
the set of axioms (2). The size of a rectangular proof is
the number of clauses in it. Let s(m,n) be the minimum
size of any rectangular refutation of ¬PHPmn .

Let us firstly see that proofs in the rectangular calcu-
lus can be polynomially simulated by resolution proofs
from ¬PHPmn .

Statement 5.2 Suppose that a rectangular clause R
has a rectangular proof of size s from a set R of ini-
tial rectangular clauses. Then there exists a resolution
proof of R from the set of axioms R+ (1) that has size
at most m2(s+ n).

Proof. Since there are at most m2n axioms (1), we
only have to show how to simulate the rule (6) with at
most m2 resolution inferences using (1) as additional
axioms. This is done straightforwardly: for every i ∈ I1
we find some ν with i 6∈ Iν , and infer RIJ ∪{¬pij} from
RIν ,Jν∪{j} using at most |Iν | ≤ (m−1) resolutions with
appropriate axioms (1). Then we consecutively resolve
the resulted clauses with RI1,J1∪{j} along {pij | i ∈ I1 }
and get rid of these atoms. The whole inference uses at
most |I1| · (m− 1) + |I1| ≤ m2 resolution rules.

Unfortunately, it does not look plausible that ar-
bitrary resolution proofs of PHPmn can be efficiently
simulated in the rectangular calculus. However, many
known constructions, both in the context of upper and
lower bounds, can in fact be viewed as rectangular. We
provide this view for three known results:

• Brute-force search proof of PHPn+1
n :

s(n+ 1, n) ≤ 2n+1

• Non-trivial proof of PHPmn for large m [BuP96]:

s(m,n) ≤ exp(O(logm+ n log n/ logm))

• The Haken-Buss-Turán lower bound [Hak85,
BT88]:

s(m,n) ≥ exp(Ω(n2/m)).

While the rectangular view of the two upper bounds
presents the rectangular calculus merely as convenient
for describing resolution proofs of PHPmn , the view of
the lower bound uses something more essential and sur-
prising: we can trace rectangular clauses in an arbitrary
resolution proof of PHPmn . The rectangular proofs of
these results are deferred to Appendix.

Quite remarkably, the rectangular calculus is equiv-
alent to the column model from the previous section.
The proof of this equivalence (similar to the proof of
Proposition 3.2) takes up the rest of Section 5.

Firstly we notice that rectangular proofs can be fur-
ther structured to work only with “one-dimensional”
clauses. We say that a rectangular clause RIJ is com-
pact if J = [d] for some d, and abbreviate this clause
as RI,d. Note that the axioms (2) are compact. The
following inference rule

RI1,d+1, . . . , RIk,d+1

RI,d

(I1 ∩ . . . ∩ Ik = ∅, d ≥ 0,
I1 ∪ . . . ∪ Ik ⊆ I)


(7)

is a special case of the rule (6).

Lemma 5.3 For every rectangular proof of a compact
clause R from a set R of initial compact clauses, there
exists a rectangular proof of R from R that has the same
size, and such that every line is a compact clause and
every inference rule has the form (7).

Proof. It is easy to see that the “compression opera-
tor” that replaces any rectangular clause RIJ by RI,|J|,
transforms the rule (6) into either the trivial rule (i.e.,
when some premise is contained in the conclusion) or
an instance of (7).

Theorem 5.4 s(m,n) is equal to the minimal possible
size of a uniform m-way read-once b.p. in n variables
solving the search problem Columnmn .

Proof. a). Let P be a rectangular refutation of
¬PHPmn that has size s(m,n). By Lemma 5.3 we may
assume that P contains only compact clauses, and that
inference rules have the form (7). We convert P into an



(oblivious) m-way read-once b.p. B as follows. Nodes
of B are just lines of P , the source node s is the final
(empty) rectangle in P , and axioms become sink nodes.
For the computational node corresponding to the con-
clusion RI,d of the inference (7), the outgoing edge la-
belled by i goes to some premise RIν ,d+1 with the prop-
erty i 6∈ Iν . Clearly, working on an input A ∈ [m]n, this
b.p. traverses only through compact clauses RI,d falsi-
fied by A (in the sense {A(1), A(2), . . . , A(d)} ∩ I = ∅)
and thus eventually finds i 6∈ im(A).

b). Conversely, suppose that B is an uniform m-way
read-once b.p. in n variables solving the search prob-
lem Columnmn . Using notation from the proof of Theo-
rem 4.5, we associate with every node v the rectangular
clause R(v) = RI(v),X(v). Clearly, R(s) is empty (since
X(s) is so), R(t) contains R{i},[n] for a sink t labelled
by the output i 6∈ im(A), and R(v) can be obtained
from R(v1), . . . , R(vm) via one application of the rule
(6) if v is a computational node and v1, . . . , vm are all
its children. Thus, we have constructed a rectangular
refutation of ¬PHPmn that has the same size as B.

As a by-product of the above proof we obtain the
fact that every read-once b.p. solving Columnmn can be
made oblivious without any increase in size (this is also
easy to prove directly).

Using Theorem 5.4, we can translate the Buss-Pitassi
upper bound (see Appendix, Example 2) to the column
model, and our lower bound in Theorem 4.5 to the rect-
angular calculus:

Corollary 5.5 There exists an m-way read-once b.p.
in n variables that solves Columnmn and has size at most
exp(O(

√
n log n+ n log n/ logm)).

Corollary 5.6 s(m,n) ≥ exp(Ω(
√
n+ n/ logm)).

6 The Transversal Calculus

In this section we define a natural (sound and com-
plete) proof system for proving lower bounds on the
transversal number τ(A), and show it to be equivalent
to the rectangular calculus and the column model. We
thus infer the following lower bound for proofs in this
system. Any proof that a family of m disjoint sets re-
quire at least n elements to hit it, must be at least
exp(
√
n) long, even if m is much larger than n or even

infinite.
Recall that for a family of sets A, we denoted by τ(A)

the size of the smallest set hitting every member of A.
Let us further define ∩A = ∩A∈AA and ∪A = ∪A∈AA
(respectively the intersection and union of all sets in A).
As usual |A| denotes the cardinality of this family, i.e.,
the number of sets in A.

Definition 6.1 Lines in the transversal calculus have
the form τ(A) ≥ n, where A is a family of sets, and

n is an integer. The default axioms are of the form
τ(A) ≥ 1, where A is non-empty, and the only (unary)
inference rule has the form

τ(A) ≥ n
τ(B) ≥ n+ 1

(∀A ∈ A ∃BA ⊆ B (∩BA = ∅ & ∪ BA ⊆ A)).


(8)

While the intuition behind this inference rule may not
be clear at first sight, the simple proof of its soundness
and completeness below would clarify it. We define the
size of a transversal proof as the sum of cardinalities |A|
of families appearing in all lines of the proof.

Remark 6.2 A sensible alternative definition of size is
to use the count

∑
A∈A |A| in place of |A| which is tanta-

mount to the length of the proof. These two definitions
are polynomially equivalent in many situations, such as
for example, if the cardinality of the family we are in-
terested in is not smaller than the number of elements
in the underlying universe.

Theorem 6.3 τ(A) ≥ n is provable in the transversal
calculus if and only if it is true, i.e., this calculus is
sound and complete.

Proof.
Soundness is proved by induction on the length of
a transversal proof. For the inductive step, suppose
τ(A) ≥ n is already known to be true, and ∀A ∈
A ∃BA ⊆ B(∩BA = ∅ & ∪ BA ⊆ A). We wish to
prove τ(B) ≥ n + 1. Assume that, to the contrary, T
is a transversal of B with |T | = n. We derive a con-
tradiction. Choose any i ∈ T . Since T \ {i} is not a
transversal of A, there exists some A ∈ A such that
A∩ T ⊆ {i}. But since ∩BA = ∅, there exists also some
B ∈ BA (which implies B ⊆ A) such that i 6∈ B. We
conclude that B ∩ T ⊆ (A ∩ T ) − {i} = ∅, contrary to
our assumption that T is a transversal of B.

Completeness. Let Un be the family of all sets whose
complements (to the whole universe) have size n − 1.
Let � be the quasiordering on families of sets given by
A � B ⇐⇒ ∀B ∈ B ∃A ∈ A(A ⊆ B). Completeness is
immediately implied by the combination of the following
three facts easily checkable individually:

• Provability in the transversal calculus is antimono-
tone w.r.t. �. In other words, if A � B and
τ(B) ≥ n is provable, then τ(A) ≥ n is provable,
too.

• τ(A) ≥ n iff A � Un.



• τ(Un) ≥ n is provable in the transversal calculus.
In fact,

τ(Un) ≥ n
τ(Un+1) ≥ n+ 1

is a legal inference.

For a family of sets A and an integer n such that
τ(A) ≥ n + 1 is true, let us denote by t(A, n) the min-
imum size of any transversal proof of this fact, and by
s(A, n) the minimum size of any rectangular proof of
the empty clause from the set of initial clauses{

RA,[n] |A ∈ A
}
. (9)

Note that s(A, n) generalizes the function s(m,n)
studied in the previous section: namely, s(m,n) =
s({{1}, {2}, . . . , {m}}, n). The following result says that
the rectangular and transversal calculi are essentially
just different forms of the same proof system:

Theorem 6.4 For every family of sets A and every in-
teger n such that τ(A) ≥ n+ 1, we have

s(A, n) ≤ t(A, n) ≤ s(A, n) + |A|.

Proof.
Lower bound on t(A, n). Suppose we have a transver-
sal proof

τ(A1) ≥ 1
τ(A2) ≥ 2
· · ·

τ(An+1) ≥ n+ 1
of size t(A, n), where An+1 = A. We convert it into
a rectangular proof (in the compact form) as follows:
for every A ∈ Ad, introduce the clause RA,d−1. Then
the clauses resulting from An+1 become initial axioms
(9). Furthermore, if d ≤ n and A ∈ Ad, then RA,d−1

is inferred from {RB,d |B ∈ BA } (where BA ⊆ Ad+1 is
chosen accordingly to (8)) via one application of (7).
Finally, any A ∈ A1 (remember that A1 is non-empty!)
gives rise to the empty clause.
Upper bound on t(A, n). We prove it by reversing
the above argument. By Lemma 5.3, there is a rectan-
gular proof in compact form of size s(A, n). To obtain
a transversal proof, we set for each d

Ad = {A |RA,d−1 appears in the proof} .

One subtle point is that in this way we obtain only a
s(A, n)-sized transversal proof of τ(A′) ≥ n+1 for some
subset A′ of A, as we do not require that all axioms
necessarily appear in the proof (this is more than just
an excessive pedantry – cf. the last argument in the
proof of the bound (13) below!) We convert it into a
transversal proof of τ(A) ≥ n + 1 simply by adding all
sets from A \ A′ to the last line.

Denote t({{1}, {2}, . . . , {m}}, n) by t(m,n).

Corollary 6.5 exp(Ω(logm + n/ logm)) ≤ t(m,n) ≤
exp(O(logm+ n log n/ logm)).

Proof. Immediate from Theorem 6.4, Corollary 5.6
combined with the trivial bound t(m,n) ≥ m, and
(12).

7 Conclusion and open problems

In studying the complexity of resolution proofs of the
pigeonhole principle PHPmn , the case of m = n2 pigeons
becomes a natural barrier where ordinary (static) distri-
butions on the set of partial truth assignments, restric-
tions etc. fail to fulfill their mission. In this paper we
have proved first partial results beyond this barrier, and
we hope that the idea which allowed us to overcome it
(i.e., the usage of dynamical distributions constructed
along with the progress of a computation or a proof it-
self) will eventually lead to establishing lower bounds
on the size of resolution proofs of PHPmn , at least in
the regular case. The next step in carrying out this
program might be the following

Problem 1 Prove exponential lower bounds on the size
of any oblivious read-once b.p. solving S¬PHPmn .

More modest (but still interesting) goal is to close
the logarithmic gap between upper and lower bounds
on s(m,n):

Problem 2 What is the order of magnitude of
log s(∞, n)? [BuP96] showed that it is at most

√
n log n,

and we have proved that it is at least
√
n.

Finally, we would like once more to draw attention
to the fact that we have only a handful of natural proof
systems for co-NP-complete sets other than TAUT. We
propose a more systematic study of natural reducibil-
ities between such systems: this would help convinc-
ing combinatorists and complexity theoretists (and our-
selves) that proof complexity is a little bit more than
just the Hilbert-style game with abstract symbols on a
sheet of paper.
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[Ch77] V. Chvátal. Determining the stable set number
of a graph. SIAM J. on Computing, 6:1–14,
1977.
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Appendix: Rectangular “view” of Upper
and Lower Bounds

Example 1 (brute-force search proof of PHPn+1
n )

We consecutively infer, for d = n, n − 1, . . . , 1, 0, all
(n − d + 1) × d compact clauses, i.e., all rectangular
clauses of the form RI, [d], |I| = n − d + 1. The case
d = n is given as axioms (2), and if we already have all
(n − d) × (d + 1) compact clauses, then, given I with
|I| = n−d+1, we infer RI, [d] from

{
RI\{i}, [d+1] | i ∈ I

}
with a single application of (6). At the end (for d = 0)
we get the empty clause. This shows the bound

s(n+ 1, n) ≤ 2n+1. (10)

Example 2 (non-trivial proof of PHPmn for large
m [BuP96]) We also have the following non-trivial re-
cursion for s(m,n):

s(m2, 2n) ≤ (m+ 1) · s(m,n). (11)

In order to see this, let P be the rectangular refuta-
tion of ¬PHPmn that has size s(m,n). Replacing every
clause RIJ in P with RI,J∪{n+1,...,2n} (i.e., adding n new
holes), we will get a rectangular proof of R[m],{n+1,...,2n}



from axioms {pi1, pi2, . . . , pi,2n} (i ∈ [m]) that has
the same size s(m,n). By symmetry, we have similar
s(m,n)-sized proofs of every m× n rectangular clause.

The dual transformation that can be done with the
proof P is to replace every single pigeon with an m-
member pigeon family, i.e., replace every clause RIJ
with RI×[m],J . This gives us an s(m,n)-sized rectan-
gular refutation of the set of clauses{

R{1}×[m],{n+1,...,2n}, . . . , R{m}×[m],{n+1,...,2n}
}
.

Combining this refutation with the s(m,n)-sized proofs
of R{i}×[m],{n+1,...,2n} constructed above, we get the re-
cursion (11).

(10) and (11) imply

s
(

(n+ 1)(2`), 2` · n
)
≤ (n+ 1)(2`) · 2n+1.

Substituting here n := d 2n logn
logm e, ` := blog

(
logm
logn

)
c

(m ≥ n3, logarithms are base 2), we have the bound

s(m,n) ≤ exp(O(logm+ n log n/ logm)) (12)

(which follows from (10) for m < n3). It implies

s(m,n) ≤ exp
(
O
(√

n log n+ n log n/ logm
))

(13)

(for m ≥ 2
√
n logn just use the first 2

√
n logn pigeons

ignoring all others), and this is the best upper bound
on the complexity of resolution proofs of PHPmn (not
necessarily rectangular!) known today.

Example 3 (Haken-Buss-Turán bound) In Exam-
ple 1 we used rectangular clauses of perimeter (n+1) for
upper bounds; now we show how to trace such clauses
through an arbitrary resolution proof.

Firstly we get rid of negations (a dual construction
was previously used in [Bus87, BP96, BuP96, Juk96]).
For this purpose we replace in a resolution refutation
of ¬PHPmn every negative literal (¬pij) by the set of
literals {pij′ | j′ 6= j }. This results in a proof of the
empty clause in the positive calculus that operates with
positive clauses, has 1 × n and 2 × (n − 1) rectangular
clauses as axioms (the latter resulting from (1)), and
has one inference rule

C1 ∪ {pij} C2 ∪ {pij′ | j′ 6= j }
C

(C1 ∪ C2 ⊆ C).


(14)

In fact, this calculus is easily seen to be equivalent to
resolution proofs from ¬PHPmn appended with the set
of clauses

{{¬pij1 ,¬pij2} | i ∈ [m]; j1, j2 ∈ [n], j1 6= j2 } ,

but we will not need this in what follows.
Suppose now that the premises in (14) are known to

contain rectangular clauses of perimeter (n+1): RI1J1 ⊆
C1∪{pij}; RI2J2 ⊆ C2∪{pij′ | j′ 6= j }. We wish to find
a subclause of perimeter (n + 1) in the conclusion C.
We may assume that i ∈ I1 ∩ I2 and j ∈ J1 \ J2 (other-
wise C simply inherits one of RI1J1 , RI2J2). But then C
contains two rectangular clauses R(I1∩I2)\{i},J1∪J2 and
RI1∪I2,J1∩J2 , and the sum of their perimeters is equal
to |I1 ∩ I2| + |J1 ∪ J2| + |I1 ∪ I2| + |J1 ∩ J2| − 1 =
|I1|+ |I2|+ |J1|+ |J2| − 1 = 2n+ 1. Hence, one of them
has perimeter at least (n+ 1).

Summing up, in every line of a refutation in the posi-
tive calculus we can trace a rectangular clause of perime-
ter (n+1), until we get at the end the “virtual” (n+1)×0
empty clause. Moreover, the above construction shows
that |I| ≤ |I1| + |I2|, where I1, I2, I correspond to the
rectangular clauses in the premises and the conclusion
of the rule (14), respectively. Since initially, at every
axiom, we have |I| ≤ 2, every such refutation should
contain somewhere an (n/3) × (n/3) rectangular sub-
clause (“bottleneck” in the established terminology).

Now it is easy to finish the proof of the Haken-Buss-
Turán exp

(
Ω
(
n2/m

))
bound with the idea proposed in

[BP96]. Namely, if we hit a refutation in the positive
calculus with a random restriction assigning (n/2) ran-
domly chosen pigeons to (n/2) randomly chosen holes,
then every individual clause containing an (n/6)×(n/6)
rectangular subclause gets killed to 1 with probabil-
ity at least 1 − exp

(
−Ω

(
n2/m

))
. Hence, in order for

the restricted refutation to have an (n/6) × (n/6) bot-
tleneck, the original refutation must contain at least
exp

(
Ω
(
n2/m

))
positive clauses.


