
srm-pm-1679
November 1975

AN ALMOST OPTIMAL ALGORTTHM FOR UNBOUNDED SIZARCHING

Jon Louis Bentley*
Department of Computer Science

University of North Carolina
Chapel Hill, North Carolina 27514

and

Stanford Linear Accelerator Center
Stanford University, Stanford, California 94305**

Andrew Chi-Chih Yao
Department of Mathematics

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

ABSTRACT

Unbounded searching can be viewed as searching an ordered table of

infinite size. In this paper we present an algorithm for unbounded searching

and derive a lower bound on the number of comparisons required which shows

that the algorithm is very nearly optimal.

(Submitted to Information Processing Letters)

* Work supported in part by U. S. Energy Research and Development Administration
under contract E(dl-3)515 and in part by a National Science Foundation Graduate
Fellowship.

* Work was done while this author was at the Stanford Linear Accelerator Center.

This material is based upon work supported by the U.S. Department of Energy, Office of Science,
 Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF00515.

-2-

1. Introduction

Many search methods bssed on comparisons of keys are described

by Knuth in 16, section 6.21. His work, however, deals exclusively

with searching in a table of finite size (that is, searching in a
-

bounded key space). In this paper we will consider the problem of

comparison searching in an unbounded key space.

To give an

define N+ to be

F:N+ -+ IX,Yl as

exact formulation of the problem to be attacked we

the set of positive integers and specify the function

X for j < n
F(j) = c Y for j 1 n

where n is an integer that uniquely defines F. The problem of

unbounded searching is the following: give an algorithm to determine

n, using as primitive operations only comparisons of F(i) to X for a

sequence of i E N+ chosen by the algorithm. That is, the algorithm

must determine the unique n such that F(n) = Y and F(n-1) = X by

testing different values of F(i). We say that n is the solution to

the unbounded searching problem.

For a given algorithm A let us define the cost function

CA:N+ + N+ as CA(n) = m iff algorithm A uses m evaluations of F to

determine that n is the solution to the unbounded search problem.

If we were given a probability distribution of n we could compare

two unbounded searching algorithms by comparing their average search

times for the two distributions. For lack of such knowledge we will

consider only asymptotic performance and say that algorithm A is better

I

-3-

than (equal to, worse than) algorithm B iff l& (C,(n) - C,(n)) is

negative (zero, positive).

It is easy to see an isomorphism between the problem of unbounded

searching and the problem of table lookup in an ordered table of

infinite size. Given S = Sl,S2,S3,..., a strictly increasing infinite

sequence of reals (Sk E R and Sk+l > Sk for all k E N+>, suppose that

we are asked to find the unique first element in S that is greater

than or equal to a fixed z E R using as a primitive operation only

the question "Is Si < x?" for i E N'. To solve this table lookup

problem, use F(i) = X iff Si < z; the desired element of S is then

Sn where n is the solution to the isomorphic problem of unbounded

searching.

It is also easy to see that for any deterministic unbounded

search algorithm A there is a corresponding binary encoding of the

integers, constructed as follows: for every i E N+, the codeword

representing i is S i = ala2...aCA(i), where am = 1 iff the mth

evaluation of F is Y when using algorithm A to find i as the solution

to the unbounded search problem. Notice that the length of the

codeword S i representing i is C,(i). Clearly the set {Si) is a

prefix set (i.e., Si is not a prefix of S. for j # 1); if it were
J

not a prefix set then algorithm A would not be able to terminate

accurately for the i in violation of the prefix definition.

The problem of unbounded searching arises in many diverse areas.

Suppose that one wants to find the zero of function G:N+ + R that

is known to cross the Laxis only once; this can be viewed as an

unbounded searching problem if one ignores such (possibly misleading)

-4-

properties as the derivatives of G. Testing a system for a breaking

point might involve an unbounded search; one knows that the system

functions with zero workload and wishes to find that workload at

which the system no longer functions. Unbounded searching could be

used in searching an extremely large ordered table if one wanted to

pay a search cost proportional to the item's distance from the

front of the table. We have already seen that every unbounded

search strategy yields a uniquely decipherable prefix encoding of

the integers; therefore, g ood search strategies can have important

applications in information theory.

We investigate a number of algorithms for solving the unbounded

searching problem in section 2. In section 3 we will show a lower

bound for the cost function C,(n) for any unbounded searching algorithm

A that is almost attained by one of the algorithms given in section 2.

Possible topics for further work in this area are mentioned in section

4.

2. Unbounded searching algorithms

In this section we will examine a number of algorithms for

unbounded searching.

Algorithm BO (Unary Search)

The most straightforward algorithm for unbounded searching is to

test F(l), F(2), until F(n) = B. It is easy to see that the cost

of this algorithm is CB (n) = n.

Algorithm B1 (Binary Seirch)

The next algorithm suggested is the standard bounded binary search

-5-

algorithm, using the "gambler's strategy" of doubling successive

guesses to provide the upper bound needed for the binary search.

More precisely, the first stage of the algorithm determines

m- Llg n-! + 1 by successively evaluating F(2i-1) for i = l,?,...

until F(Zm-1) = B, at which time we know that 2m-1 < n 2 2m-l, The

second stage then uses a standard bounded binary search on those

2 m-l elements to determine the exact value of n. The first stage

will require m = [lg nj + 1 evaluations of F and the second stage

will require lg 2 m-l = m-1 = 1 J lg n evaluations of F, so the total

cost is C
B1

(n) = 2 llg nJ + 1. It is helpful to view an unbounded

search algorithm as a decision tree in which the label i on an

internal node represents the evaluation of F(i), a left (right)

branch corresponds to the outcome of the evaluation being Y (X),

and external nodes represent solutions to the problem. Figure 1

is the decision tree representation of algorithm B1.

Algorithm B2 (Double Binary Search)

The first stage of algorithm B1 essentially uses unary search

(algorithm Bo> to determine m = I I lg n + 1 by successively evaluating

F(2'-1). We could, however, make use of algorithm B 1 to find m by

replacing every occurrence of the expression F(j) in stage one of B 1
.

with the expression F(2J-l). The cost of the second stage of the

resulting algorithm B2 will be the same as the second stage of B1

(that is, m-l = Ilg d), but the cost of the first stage will be

reduced from CB (m) = m to CB (m) = 2 11,(m)) + 1, so the total cost
0 1

of the algorithm (substituting m = llg nl. + 1) is

CB2(n) = llg nl+ 2 Llg(Llg nl + 1)) + 1.

-6-

.

Figure 1. Decision tree representation of algorithm Bl

-7-

Algorithm Bk (k-nested Binary Search)

To synthesize algorithm B2 from B1 we replaced a unary search

by a binary search. This same technique could be used to create a

new algorithm B3 from B2; we would use algorithm B1 to determine

Ilg(!,lg nJ + 1)) + 1 by rewriting F(i) in algorithm B1 to be .
F(*2=-1 -1); (algorithm B2 uses a unary search to find 1lg(\-lg nj + l)j + 1.)

In general this technique could be applied to algorithm Bk 1 to yield

a new algorithm Bk.
.

To analyze algorithm Bk we define aJ(n> recursively by

go(n) = n, and

,j+'(n) = Ilg &j(n)-! + 1.

We define Lj(n) = %j(n) - 1 for j E N, It is easy to prove by

induction that

CB Cd = Ll(n) -I- L2(n> + . . . + LkM1(n) + 2Lk(n) + 1
k

= llilk Li(n) + Lk(n) + 1. c (1)

Our discussion of algorithm B1 provides a basis for the induction. We

will not give a detailed form of the inductive part here but the spirit

of that proof is that the L k (n) f 1 in (1) represents the cost of a

unary search and the cost of the corresponding binary search is

2Lk+l(n) + 1. Since CB (n) = n = Lo(n) + 1, (1) holds for any k E N.
0

It is helpful to view the algorithm B0,B1,B2,... as a progression.

To do this we have represented the first few algorithms in Figure 2.

Each box in the figure corresponds to what might be thought of as a

subroutine, and the tree structure represents the calling hierarchy.

Rounded boxes call further routines; rectangular boxes represent

-8-

k Find n) i \ Find n i

,! ,

Figure 2. Succession of algorithm B0,B1,B2, . . . , Bk,,..

-9-

basic operations. The left "subroutine" of a round box is called

before the "right" subroutine.

Algorithm U (The Ultimate Algorithm)

Now that we have at our disposal an infinite number of unbounded -

searching algorithms, which one shall we use for a particular search?

If we choose Bk for a fixed k we can fall into either of two traps:

if k is small and n is large, we are paying the high cost of 2Lk(n)

when we could be paying only Lk(n> + 2L kSl(n), which is quite a

significant difference for some values of n and k. On the other hand,

if k is large and n is small, we could be using 'too sophisticated"

an algorithm and therefore paying a lot of comparisons for very little

information. These two examples hint to us that we should choose k

as a function of n.

We therefore propose that algorithm U consist of two parts:

the first stage will choose an appropriate value of k and the second

stage will then use algorithm Bk to solve the problem. The above

two examples suggest that to avoid both traps we should choose the

least k such that Lk(n) is constant. In particular, we propose to

choose k = L*(n) = min j such that Lj(n) = 1. Since L is defined by R,

it will be easier to work with L*(n) = a*(n) = min j such that

$?,j(n) = 2.
.

By the definition of EJ(n> we can see that E*(n) is the

least j E I such that g(j) I n where g is defined recursively as

g(0) = 2, and

g(j+l) = 2g(j)-l.

(Notice that L*(n) has behavior similar to lg*(n).) Thus the first

- 10 -

stage of algorithm U will determine k by testing F(g(O)), F(g(l)),

until F&W) = B, and then use Bk to determine n.

The first stage of algorithm U will require k+l = L*(n) + 1

evaluations of F to find L*(n). Our analysis of algorithm Bk tells

us the cost of the second stage. Thus the total cost of algorithm

u is

C,(n) = [l + L*(n)] + [C
BL*(n>

(n> 1

= I1 + L*(n) 1 + [lSiSL*(n)Li(n) + LL*(")(n) + 11 I

= 4 + L*(n) + c Li(n).
lSSL*(n)-1

3. A lower bound

In this section we shall prove a lower bound for the cost function

of any correct unbounded searching algorithm which shows that algorithm

U given in section 2 is very nearly optimal. We demonstrated in

section 1 that any unbounded searching algorithm yields an encoding

of the integers. For a given encoding of the integers, let f(n)

represent the number of bits used to represent the integer n. By the

mapping of search algorithms to codes, any lower bound for f(n) also

is a lower bound for the cost function C,(n), for any correct

unbounded search algorithm A.

We saw in section 1 that the codes induced by search algorithms

are prefix codes, which implies Kraft's inequality (see [Xl):

1-L
jr1 ,f(j) ' '* (2)

We shall presently show that (2) implies the following theorem:

I

- 11 -

Theorem A: For infinitely many n, f(n) > lg n + lg (2) n + . . . +

lg(lg* d n - 2(lg*n)

Proof: Define, for positive integers R and n,

2!t
3 kQ=22 -R-2

22 3 +1
k,+M

3 =

2 7 ni = 22 1 kR+11+2

and K(n) = lg* n - lg*(lg* n) - 2.

The following facts are easy to verify:

Fact 1: K(n) = kR if nR I n I ni

1s
$,+l)

ni >2 k!2

b3
$+I)

nR<kQ+"+3

Fact 2:
x(lg x)(lg(2?x) .., (lJk) x)

= (!Ln2)k !2gck+')x

Lemma B: Let A =

infinitely many n

Proof of Lemma B:

such that 2f(n) I

In I ng < n I n’ R = 3,4,... 1. Then there exists

E A such that 2'(n) > n(lg n)(lg(2) n) . . . (lg(k(n)) n)

Suppose the lemma is false. Then there exists R.

n(lg n)(lg(2) n) . . . (lg(k(n)) n) if nR I n 2 n;1 for

some G 1 R 0'

This implies, for R2R 0'
00

l

1 +y c
1

j=l 2 n In5n R a' n lg n lg (2) n . . . lg (k(n) > n

- 12 -

I
n; 2

x(lg x)(lg(2Yx) .., lg(ke) x
J
“R

kR (kg+-1.) x=n !i
= (%n2> Rg x

x-n R

> (Ln2)kQ(2ke - kR - R - 3)

= (2!?n2)k"(l + O(1)) (3)

where Facts 1 and 2 are used in the derivation of (3).

Since 2Rn2 > 1, (2) implies This contradicts (1)

and Lemma B is proved.

Thus, we have shown that for infinitely many n E A,

f(n) > Rg n + Rg (2) n + + Qg(k(dfl) n

= Rg n f 9.g(2) n + 1:: + Lg(kg* n, n - g(n)

where g(n) = Rg (k(n)+2) n + . . .

(4)

Observe that, for nR I n I nal, Rg (kb)+2) n I Rg* n. Therefo

g(n) I Rg* n + Rg(Lg* n) -I- . . . + Qg(Q3*(Q* d) (kg* n>

re,

< 2Rg* n for all sufficiently large R. (5)

Theorem A follows from (4) and (5) immediately.

4. Areas for further work

There are many ways in which the unbounded search problem can be

extended. To model a multicomparator system, one might consider

unbounded searching with primitive operations consisting of testing k

different values of F. Notice that the outcome of such a test has

k+l different possibilities and hence can be described by lg (k+l) bits.

- 13 -

This problem is similar to Karp and Miranker's generalization of

finding a maximum of a function [5] (see also Linn [4]). We

considered the cost of evaluating F to be independent of the outcome

of the evaluation; in certain applications, however, it might be

much more expensive to have tested (for example) a Y rather than an

X (perhaps in locating a breaking point of a system). In general,

given costs x and y of evaluating F to X and Y, what is the optimal

algorithm to use? Knuth describes in [6,section 6.2.11 a Fibonaccian

search for a finite ordered table that has a better average search

time (though worse worst-case time) than straightforward binary search

[6, section 6.2.11. Is the corresponding unbounded Fibonaccian

search interesting?

It would be nice to close the gap between the running time of

algorithm U and the lower bound derived in section 3.

It was demonstrated in section 1 that every unbounded search

strategy suggests a prefix encoding of the integers. Indeed, Elias

[l] has studied codes that are isomorphic to each of the search

strategies in section 2, and Even and Rodeh 123 have studied a code

similar to algorithm U. Conversely, does there exist a search

strategy corresponding to every prefix code for the integers? Does the

framework of unbounded searching provide any insight into problems in

information theory? What are the implciations of the lower bound

derived in section 3 to Elias' work?

I

- 14 -

References

1. Elias, P. "Universal codeword sets and representation of the
integers." IEEE Trans. on Information Theory, vol. IT-21,
no. 2, March 1975, pp. 194-203.

2. Even, S. and M. Rodeh. "Economical encoding of commas between
strings." TEmION Technical Report No. 54, July 1975,
Haifa, Israel.

3. Gallager, P. E. Information Theory and Reliable Communication,
Wiley, New York, 1968.

4. Linn, J. "General methods for parallel searching." Technical
Report No. 61, Digital Systems Laboratory, Stanford Electronics
Laboratories, Stanford University, May 1973.

5. Karp, R. M. and W. L. Mirankier. "Parallel minimax search for a
maximum." J. of Comb. Theory 4, pp. 19-35.

6, Knuth, D. E. The Art of Computer Programming, volume 3 (Sorting
and Searching), Addison-Wesley, 1975.

