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ABSTRACT 

Unbounded searching can be viewed as searching an ordered table of 

infinite size. In this paper we present an algorithm for unbounded searching 

and derive a lower bound on the number of comparisons required which shows 

that the algorithm is very nearly optimal. 
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1. Introduction 

Many search methods bssed on comparisons of keys are described 

by Knuth in 16, section 6.21. His work, however, deals exclusively 

with searching in a table of finite size (that is, searching in a 
- 

bounded key space). In this paper we will consider the problem of 

comparison searching in an unbounded key space. 

To give an 

define N+ to be 

F:N+ -+ IX,Yl as 

exact formulation of the problem to be attacked we 

the set of positive integers and specify the function 

X for j < n 
F(j) = c Y for j 1 n 

where n is an integer that uniquely defines F. The problem of 

unbounded searching is the following: give an algorithm to determine 

n, using as primitive operations only comparisons of F(i) to X for a 

sequence of i E N+ chosen by the algorithm. That is, the algorithm 

must determine the unique n such that F(n) = Y and F(n-1) = X by 

testing different values of F(i). We say that n is the solution to 

the unbounded searching problem. 

For a given algorithm A let us define the cost function 

CA:N+ + N+ as CA(n) = m iff algorithm A uses m evaluations of F to 

determine that n is the solution to the unbounded search problem. 

If we were given a probability distribution of n we could compare 

two unbounded searching algorithms by comparing their average search 

times for the two distributions. For lack of such knowledge we will 

consider only asymptotic performance and say that algorithm A is better 
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than (equal to, worse than) algorithm B iff l& (C,(n) - C,(n)) is 

negative (zero, positive). 

It is easy to see an isomorphism between the problem of unbounded 

searching and the problem of table lookup in an ordered table of 

infinite size. Given S = Sl,S2,S3,..., a strictly increasing infinite 

sequence of reals (Sk E R and Sk+l > Sk for all k E N+>, suppose that 

we are asked to find the unique first element in S that is greater 

than or equal to a fixed z E R using as a primitive operation only 

the question "Is Si < x?" for i E N'. To solve this table lookup 

problem, use F(i) = X iff Si < z; the desired element of S is then 

Sn where n is the solution to the isomorphic problem of unbounded 

searching. 

It is also easy to see that for any deterministic unbounded 

search algorithm A there is a corresponding binary encoding of the 

integers, constructed as follows: for every i E N+, the codeword 

representing i is S i = ala2...aCA(i), where am = 1 iff the mth 

evaluation of F is Y when using algorithm A to find i as the solution 

to the unbounded search problem. Notice that the length of the 

codeword S i representing i is C,(i). Clearly the set {Si) is a 

prefix set (i.e., Si is not a prefix of S. for j # 1); if it were 
J 

not a prefix set then algorithm A would not be able to terminate 

accurately for the i in violation of the prefix definition. 

The problem of unbounded searching arises in many diverse areas. 

Suppose that one wants to find the zero of function G:N+ + R that 

is known to cross the Laxis only once; this can be viewed as an 

unbounded searching problem if one ignores such (possibly misleading) 
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properties as the derivatives of G. Testing a system for a breaking 

point might involve an unbounded search; one knows that the system 

functions with zero workload and wishes to find that workload at 

which the system no longer functions. Unbounded searching could be 

used in searching an extremely large ordered table if one wanted to 

pay a search cost proportional to the item's distance from the 

front of the table. We have already seen that every unbounded 

search strategy yields a uniquely decipherable prefix encoding of 

the integers; therefore, g ood search strategies can have important 

applications in information theory. 

We investigate a number of algorithms for solving the unbounded 

searching problem in section 2. In section 3 we will show a lower 

bound for the cost function C,(n) for any unbounded searching algorithm 

A that is almost attained by one of the algorithms given in section 2. 

Possible topics for further work in this area are mentioned in section 

4. 

2. Unbounded searching algorithms 

In this section we will examine a number of algorithms for 

unbounded searching. 

Algorithm BO (Unary Search) 

The most straightforward algorithm for unbounded searching is to 

test F(l), F(2), . . . . until F(n) = B. It is easy to see that the cost 

of this algorithm is CB (n) = n. 

Algorithm B1 (Binary Seirch) 

The next algorithm suggested is the standard bounded binary search 



-5- 

algorithm, using the "gambler's strategy" of doubling successive 

guesses to provide the upper bound needed for the binary search. 

More precisely, the first stage of the algorithm determines 

m- Llg n-! + 1 by successively evaluating F(2i-1) for i = l,?,... 

until F(Zm-1) = B, at which time we know that 2m-1 < n 2 2m-l, The 

second stage then uses a standard bounded binary search on those 

2 m-l elements to determine the exact value of n. The first stage 

will require m = [lg nj + 1 evaluations of F and the second stage 

will require lg 2 m-l = m-1 = 1 J lg n evaluations of F, so the total 

cost is C 
B1 

(n) = 2 llg nJ + 1. It is helpful to view an unbounded 

search algorithm as a decision tree in which the label i on an 

internal node represents the evaluation of F(i), a left (right) 

branch corresponds to the outcome of the evaluation being Y (X), 

and external nodes represent solutions to the problem. Figure 1 

is the decision tree representation of algorithm B1. 

Algorithm B2 (Double Binary Search) 

The first stage of algorithm B1 essentially uses unary search 

(algorithm Bo> to determine m = I I lg n + 1 by successively evaluating 

F(2'-1). We could, however, make use of algorithm B 1 to find m by 

replacing every occurrence of the expression F(j) in stage one of B 1 
. 

with the expression F(2J-l). The cost of the second stage of the 

resulting algorithm B2 will be the same as the second stage of B1 

(that is, m-l = Ilg d), but the cost of the first stage will be 

reduced from CB (m) = m to CB (m) = 2 11,(m)) + 1, so the total cost 
0 1 

of the algorithm (substituting m = llg nl. + 1) is 

CB2(n) = llg nl+ 2 Llg( Llg nl + 1)) + 1. 
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. . . . . 

Figure 1. Decision tree representation of algorithm Bl 
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Algorithm Bk (k-nested Binary Search) 

To synthesize algorithm B2 from B1 we replaced a unary search 

by a binary search. This same technique could be used to create a 

new algorithm B3 from B2; we would use algorithm B1 to determine 

Ilg(!,lg nJ + 1)) + 1 by rewriting F(i) in algorithm B1 to be . 
F(*2=-1 -1); (algorithm B2 uses a unary search to find 1lg(\-lg nj + l)j + 1.) 

In general this technique could be applied to algorithm Bk 1 to yield 

a new algorithm Bk. 
. 

To analyze algorithm Bk we define aJ(n> recursively by 

go(n) = n, and 

,j+'(n) = Ilg &j(n)-! + 1. 

We define Lj(n) = %j(n) - 1 for j E N, It is easy to prove by 

induction that 

CB Cd = Ll(n) -I- L2(n> + . . . + LkM1(n) + 2Lk(n) + 1 
k 

= llilk Li(n) + Lk(n) + 1. c (1) 

Our discussion of algorithm B1 provides a basis for the induction. We 

will not give a detailed form of the inductive part here but the spirit 

of that proof is that the L k (n) f 1 in (1) represents the cost of a 

unary search and the cost of the corresponding binary search is 

2Lk+l(n) + 1. Since CB (n) = n = Lo(n) + 1, (1) holds for any k E N. 
0 

It is helpful to view the algorithm B0,B1,B2,... as a progression. 

To do this we have represented the first few algorithms in Figure 2. 

Each box in the figure corresponds to what might be thought of as a 

subroutine, and the tree structure represents the calling hierarchy. 

Rounded boxes call further routines; rectangular boxes represent 
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k Find n ) i \ Find n i 

,! , 

Figure 2. Succession of algorithm B0,B1,B2, . . . , Bk,,.. 
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basic operations. The left "subroutine" of a round box is called 

before the "right" subroutine. 

Algorithm U (The Ultimate Algorithm) 

Now that we have at our disposal an infinite number of unbounded - 

searching algorithms, which one shall we use for a particular search? 

If we choose Bk for a fixed k we can fall into either of two traps: 

if k is small and n is large, we are paying the high cost of 2Lk(n) 

when we could be paying only Lk(n> + 2L kSl(n), which is quite a 

significant difference for some values of n and k. On the other hand, 

if k is large and n is small, we could be using 'too sophisticated" 

an algorithm and therefore paying a lot of comparisons for very little 

information. These two examples hint to us that we should choose k 

as a function of n. 

We therefore propose that algorithm U consist of two parts: 

the first stage will choose an appropriate value of k and the second 

stage will then use algorithm Bk to solve the problem. The above 

two examples suggest that to avoid both traps we should choose the 

least k such that Lk(n) is constant. In particular, we propose to 

choose k = L*(n) = min j such that Lj(n) = 1. Since L is defined by R, 

it will be easier to work with L*(n) = a*(n) = min j such that 

$?,j(n) = 2. 
. 

By the definition of EJ(n> we can see that E*(n) is the 

least j E I such that g(j) I n where g is defined recursively as 

g(0) = 2, and 

g(j+l) = 2g(j)-l. 

(Notice that L*(n) has behavior similar to lg*(n).) Thus the first 
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stage of algorithm U will determine k by testing F(g(O)), F(g(l)), . . . . 

until F&W) = B, and then use Bk to determine n. 

The first stage of algorithm U will require k+l = L*(n) + 1 

evaluations of F to find L*(n). Our analysis of algorithm Bk tells 

us the cost of the second stage. Thus the total cost of algorithm 

u is 

C,(n) = [l + L*(n)] + [C 
BL*(n> 

(n> 1 

= I1 + L*(n) 1 + [lSiSL*(n)Li(n) + LL*(")(n) + 11 I 

= 4 + L*(n) + c Li(n). 
lSSL*(n)-1 

3. A lower bound 

In this section we shall prove a lower bound for the cost function 

of any correct unbounded searching algorithm which shows that algorithm 

U given in section 2 is very nearly optimal. We demonstrated in 

section 1 that any unbounded searching algorithm yields an encoding 

of the integers. For a given encoding of the integers, let f(n) 

represent the number of bits used to represent the integer n. By the 

mapping of search algorithms to codes, any lower bound for f(n) also 

is a lower bound for the cost function C,(n), for any correct 

unbounded search algorithm A. 

We saw in section 1 that the codes induced by search algorithms 

are prefix codes, which implies Kraft's inequality (see [Xl): 

1-L 
jr1 ,f(j) ' '* (2) 

We shall presently show that (2) implies the following theorem: 
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Theorem A: For infinitely many n, f(n) > lg n + lg (2) n + . . . + 

lg(lg* d n - 2(lg*n) 

Proof: Define, for positive integers R and n, 

2!t 
3 kQ=22 -R-2 

22 3 +1 
k,+M 

3 = 

2 7 ni = 22 1 kR+11+2 

and K(n) = lg* n - lg*(lg* n) - 2. 

The following facts are easy to verify: 

Fact 1: K(n) = kR if nR I n I ni 

1s 
$,+l) 

ni >2 k!2 

b3 
$+I) 

nR<kQ+"+3 

Fact 2: 
x(lg x)(lg(2?x) .., (lJk) x) 

= (!Ln2)k !2gck+')x 

Lemma B: Let A = 

infinitely many n 

Proof of Lemma B: 

such that 2f(n) I 

In I ng < n I n’ R = 3,4,... 1. Then there exists 

E A such that 2'(n) > n(lg n)(lg(2) n) . . . (lg(k(n)) n) 

Suppose the lemma is false. Then there exists R. 

n(lg n)(lg(2) n) . . . (lg(k(n)) n) if nR I n 2 n;1 for 

some G 1 R 0' 

This implies, for R2R 0' 
00 

l 

1 +y c 
1 

j=l 2 n In5n R a' n lg n lg (2) n . . . lg (k(n) > n 
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I 
n; 2 

x(lg x)(lg(2Yx) .., lg(ke) x 
J 
“R 

kR (kg+-1.) x=n !i 
= (%n2> Rg x 

x-n R 

> (Ln2)kQ(2ke - kR - R - 3) 

= (2!?n2)k"(l + O(1)) (3) 

where Facts 1 and 2 are used in the derivation of (3). 

Since 2Rn2 > 1, (2) implies This contradicts (1) 

and Lemma B is proved. 

Thus, we have shown that for infinitely many n E A, 

f(n) > Rg n + Rg (2) n + + Qg(k(dfl) n 

= Rg n f 9.g(2) n + 1:: + Lg(kg* n, n - g(n) 

where g(n) = Rg (k(n)+2) n + . . . 

(4) 

Observe that, for nR I n I nal, Rg (kb)+2) n I Rg* n. Therefo 

g(n) I Rg* n + Rg(Lg* n) -I- . . . + Qg(Q3*(Q* d ) (kg* n> 

re, 

< 2Rg* n for all sufficiently large R. (5) 

Theorem A follows from (4) and (5) immediately. 

4. Areas for further work 

There are many ways in which the unbounded search problem can be 

extended. To model a multicomparator system, one might consider 

unbounded searching with primitive operations consisting of testing k 

different values of F. Notice that the outcome of such a test has 

k+l different possibilities and hence can be described by lg (k+l) bits. 
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This problem is similar to Karp and Miranker's generalization of 

finding a maximum of a function [5] (see also Linn [4]). We 

considered the cost of evaluating F to be independent of the outcome 

of the evaluation; in certain applications, however, it might be 

much more expensive to have tested (for example) a Y rather than an 

X (perhaps in locating a breaking point of a system). In general, 

given costs x and y of evaluating F to X and Y, what is the optimal 

algorithm to use? Knuth describes in [6,section 6.2.11 a Fibonaccian 

search for a finite ordered table that has a better average search 

time (though worse worst-case time) than straightforward binary search 

[6, section 6.2.11. Is the corresponding unbounded Fibonaccian 

search interesting? 

It would be nice to close the gap between the running time of 

algorithm U and the lower bound derived in section 3. 

It was demonstrated in section 1 that every unbounded search 

strategy suggests a prefix encoding of the integers. Indeed, Elias 

[l] has studied codes that are isomorphic to each of the search 

strategies in section 2, and Even and Rodeh 123 have studied a code 

similar to algorithm U. Conversely, does there exist a search 

strategy corresponding to every prefix code for the integers? Does the 

framework of unbounded searching provide any insight into problems in 

information theory? What are the implciations of the lower bound 

derived in section 3 to Elias' work? 
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