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ASSTRACT. In the all-pair shortest distance problem, one computes the matrix D = (du), where dq is the minimum 
weighted length of any path from vertex i to vertexj in a directed complete graph with a weight on each edge. In 
all the known algorithms, a shortest path p,~ achieving di./is also implicitly computed. In fact, logs(f (n)) is an 
information-theoretic lower bound, wheref(n) is the total number of distinct patterns (Po) for n-vertex graphs. As 
f(n) potentially can be as large as 2":', it would appear possible that a nontrivial lower bound can be derived this 
way in the decision tree model. The characterization and enumeration of realizable patterns is studied, and it is 
shown thatf(n) < C "~. Thus no lower bound greater than Cn 2 can be derived from this approach. It is proved as 
a corollary that the Triangular polyhedron T ~"~, defined in E ¢~'~ by d,j > 0 and the triangle inequalities d~j + 
dik > d,k, has at most C"' faces of all dimensions, thus resolving an open question in a similar information bound 
approach to the shortest distance problem. 
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1. Introduction 

Let G be a d i rec ted  comple te  g r a p h  on  n vert ices  v~, v2 . . . . .  v,, wi th  a n o n n e g a t i v e  dis tance  
d O. associated wi th  each  edge (vi, vj). In  the  all-pair shortest distance problem, one  wishes  to 
c o m p u t e  the  n × n shortest distance matrix D *  -- (d~), where  d,~ is the  m i n i m u m  total 
length  o f  a n y  p a t h  f rom vi to v i (see, e.g., [1]). Eff ic ient  a lgo r i thms  for  this  p r o b l e m  were 
devised by  D an t z i g  [2], Di jks t ra  [3], a n d  F loyd  [5]. All  these  m e t h o d s  requi re  at  least  Cn 3 
t ime in the  worst  case. M o r e  recent ly ,  F r e d m a n  [6] gave  an  a l g o r i t h m  wi th  r u n n i n g  t ime 
O(n3(log log n / l o g  n)1/3), wh ich  is s l ight ly be t te r  t h a n  O(n3). Subs t an t i a l  i m p r o v e m e n t s  
over  O(nS), however ,  are  yet to be  found .  O n  the  o the r  hand ,  n o  lower  b o u n d  be t t e r  than  
Cn 2 is k n o w n  to the  a l l -pa i r  shor tes t  pa th s  p r o b l e m  for  p rog rams  wi th  b r a n c h i n g  ins t ruc-  
tions. (Ke r r  [9] p roved  tha t  Cn ~ steps are  necessa ry  for  s t ra igh t l ine  p r o g r a m s  with 
opera t ions  (min ,  +} . )  

A n a t u r a l  m o d e l  i nco rpo ra t ing  b r a n c h i n g  ins t ruc t ions  is the  decision tree model, which  
is used, for  example ,  in  the  s tudy  o f  m a n y  so r t ing  type  p rob l ems  [10]. Indeed ,  all the 
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existing shortest paths algorithms mentioned above can be properly modeled by linear 
decision trees, where the primitives are ternary comparisons '~f({dii} ) ~ 0" with linear 
functions f An apparently promising approach to obtaining lower bounds for linear 
decision trees was suggested by Yao, Avis, and Rivest [13]. It was shown that, in this 
model, Cn21og n comparisons are necessary to compute the shortest distance matrix if a 
certain ~lOlyhedron T'~ ~, in (~)-dimensional Euclidean space (see Section 2.3) has at least 
exp(Cn og n) edges, i.e., one-dimensional faces) An interesting question is thus to 
determine if T In~ in fact has that many edges. 

While counting the number of  comparisons made in a decision tree tends to underesti- 
mate the "true" complexity of  computing shortest distances (for example, Fredman [6] 
showed that for any given n, there exists a linear decision tree with O(n zS) comparisons), 
it seems to be at present the only hope for obtaining nontrivial lower bounds. In this paper  
we examine an approach based on information-theoretic arguments. As will become clear, 
a natural information lower bound is log3 [P(n)[ - n 2, where P(n) is defined as follows: 
For any n × n matrix D = (dij) with nonnegative entries, let pattern(D) denote the n × n 
matrix (pii), where Pt~ is the set of  all shortest paths from vertex v, to vj in the graph G 
associated with D. We define P(n) to be the collection of  all distinct patterns obtainable 
this way. As the cardinality of  P(n) is potentially large (0 (2  ~:''°g ~), even if we require each 
P,i to consist of  a unique path), it appears hopeful that strong lower bounds could be 
established. However, we will show that in fact log[P(n)[ = O(n2); therefore no lower 
bounds better than Cn 2 can be derived from this approach. The enumeration of  P(n) is 
based on a study of  "connection matrices," as described in the next paragraph. 

Let D = (do), D '  = (d~) be two n x n matrices with nonnegative entries. Then the 
connection matrix  Co,n" for D and D '  has as entries 

Co.n,[i,j] = {c~[l <_ a <- n, di~ + d~. = min (di, + d~j)} for I ___ i , j  < _ n. 

In Sections 2 through 5 we develop characterizations for R(n), the set of  all "realizable" 
• / / 2  

connection matrices. As a result, IR(n)l ~s shown to be of  the orderC (here again, rather 
short of  its 2 ~ potential). In Section 6 we apply the scheme used in [1, p. 204] for reducing 
shortest distances computation to {min, +} matrix multiplication to establish a recurrence 
relation involving IR(n)l and IP(n)l and thereby show that [P(n)[ _<C "~. 

In another application of  the concept of  connection matrices, we show that, somewhat 
unexpectedly, each face of  the polyhedron T t~ mentioned earlier corresponds naturally to 

. . . .  n 2  
a umque n x n connection matrix (see Section 2•3)• Therefore T I~ has no more than C 
edges, which resolves the question in the polyhedron approach [13] as well• 

2. Connection Matrix ,  Information Bounds, and Triangular Polyhedron 

2.1 THE {MIN, +} MATRIX MUL'rXPLICA'rION. A distance matrix is a matrix of  non- 
negative real numbers. For  two n × n distance matrices D = (dii) and D' -- (d~i), define 
their sum A = (aij) = D • D'  and product B = (hi1) = D ® D', respectively, by aij = 
min {di/, d~j} and bij = min(dik + d~i l l  _< k _< n}. The multiplicative operation ® is also 
called the {rain, +} matrix multiplication• It is well known [1, 4, 1 I] that the complexity of  
{min, +} matrix multiplication is closely related to that of  finding all-pair shortest 
distances, i.e., computing the transitive closure D* = (d~) of a matrix D, where d* = 0 and 
d,~ = (D @ D 2 @ D a @ " " ) i i  for i # j .  (D i = D i - 1  ~ D by definition.) We first focus 
attention on the {min, + )  matrix multiplication for its conceptual simplicity. The discus- 
sions are then extended to the computation of  shortest distances in Section 6. 

We consider the computation of  {min, +} -product for two n x n matrices in the decision 
tree model. An algorithm in this model is a ternary tree• Each internal node contains a test 
"f(D, D')  :0" for some nonconstant rational f u n c t i o n f o f  2n 2 arguments. Each leaf of  the 

It was incorrectly claimed in [13] that T '"~ could be shown to have exp(Cn21og n) edges, which would then imply 
the ~2(n21og n) lower bound. A revised version of [13] will appear as [141. 
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tree contains a set of  rational functions (qii, i _< i , j  _< n} on the 2n 2 variables {d e, d,~}. For 
any input (D, D'), the algorithm moves from the root down the tree, at each node testing 
and then branching according to whetherf(D,  D')  is >0, =0, or <0, until a leaf is reached. 
At that point the product B = D ® D '  is given by big = qij(D, D'). The cost of  the algorithm 
is defined to be the height of  the tree. The complexity L(n) in this model  is the minimum 
cost over all such algorithms. When all the functions f ,  qij are restricted to be linear 
functions, the model is called the linear decision tree model, and the corresponding 
complexity is denoted by Lo(n). Trivially, L(n) _< Lo(n). 

We shall be interested in a natural  information-theoretic bound on L(n) and Lo(n). 

2.2 CONNECTION MATRICES AND INFORMATION BOUNDS. The concept of  a connection 
matrix has been defined in Section 1. We now give some illustrations and examine the 
relationship between connection matrices and {min, +}-multiplication. 

Consider the following interpretat ion of  the product B = (bij) = D ® D' (see, e.g., [l]): 
Let X =  {x~, xz . . . . .  x,},  Y =  {yl,y2 . . . . .  y,},  and Z = {Z1, Z2 . . . . .  Zn} be three disjoint sets 
of  cities, with d,k and d~i being the distances from xi to yk and from yh to zj, respectively. 
Then b, i is the "shortest distance" from xi to zj via some intermediate city in Y. This 
suggests another way of  representing the product D ® D' ,  namely, we can list for each pair 
[i, j ]  the set of  all connecting cities yk for which d~k + d~j achieves the minimum bij. Such 
information can be tabulated into an n x n matrix Co,D,, whose [/, j ] -ent ry  is the set of 
integers {aldm + d~. = mink(d/k + d~i)}. Clearly Co,o, is the connection matrix for D and 
D',  as defined earlier. 

2030 D '  = (1520~ The Example 1. For  the graph shown in Figure 1, we have D = (lO 15) and ,10 lo" 
connection matrix CD,D, is (l t2 1~2). 

Not all matrices can be realized as connection matrices for some D and D'. For  example, 
there do not exist 2 x 2 distance matrices D and D '  whose connection matrix CD,D' is 
(I 2 2). For  if  we assume that Co,o, = (~ 2j) for some D = (d,i) and D '  = (d~), we have then 
four inequalities: 

dll + d~l < d12 + d '  21, 

die + d~2 < du + d~2, 
dee + d,~l < d21 + d~l, 
d2~ + d~2 < de2 + d~2. 

Adding the above four inequalities together, one obtains 0 < 0, a contradiction. 

Definition 1. An n-ary matrix M is a matrix where each entry M[i, j] is a subset of  
(1, 2 . . . . .  n}. An n-ary matrix is said to be simple if  IM[i,j]l = 1 for all i,j. 

A connection matrix CD,D" is an n-ary matrix of  dimension m x p if  D and D '  have 
dimensions m x n and n x p, respectively. For  simplicity, we will only consider the case 
m = p = n, while noting that all discussions have immediate generalizations to rectangular 
matrices. Thus, when there is no danger of  confusion, an n × n n-ary matrix will simply be 
called an n-ary matrix. 

As illustrated in the discussion above, not all of  the 2 "~ n × n n-ary matrices are 
connection matrices. 

Definition 2. An n-ary matrix M is said to be realizable (as a connection matrix) if 
M = CD,D' for some distance matrices D, D'. Let R(n) denote the family of  all n × n 
realizable n-ary matrices M. 

A subfamily of  R(n) deserves special attention. 

Definition 3. Let SR(n) be the subset of  R(n) consisting of  all simple n-ary matrices. 

We now give lower bounds to the complexity of  {min, +}-mult ipl icat ion in terms of  
[R(n) l and ]SR(n)I, It is plausible that to compute the shortest distance between x~ and zi, 



431 ~ation Bounds Are Weak  in the Shortest Distance Problem 

Xl 20 Yl 15 Zl 

"-.,. 
x2 15 Y2 10 z2 

FIG. I. An example of a connection matrix. 

i : 

!~' one has to find the best connecting cities y~. Thus there must be as many leaves as IR(n) l 
i (°r l  SR(n)I) in a decision tree. The logarithm of  the number  of  leaves then gives a lower 

bound to the height of  a tree, which is usually referred to as the information-theoretic 

bound. 

THEOREM 1. L(n) >_ log21SR(n)l for all n >_ 1. 

PROOF. Let A be any decision tree algorithm computing the {min, +}-product  of  
n x n matrices D ® D'.  Let ~ be the set of  input pairs (D, D ' )  with all their entries 
strictly positive and for which the test result is never zero at any internal point, i.e., 
I ' l-"/~¢D, D')  # 0, where / ;  are the test functions at internal node i. Clearly ~ is an open 

l¢=.et j l \  " / *  2 . . . .  " 

set in the Euclidean space E 2" , and xs dense m the posmve quadrant  (all coordinates >_0). 
For each element M E SR(n) ,  choose DM, D'm such that CoM.o~ = M and (DM, DM,) E 
~, which can be done since, for any distance-matrix pair (D, D ' )  with Cn.n, = M, all 
(DM, D~) ~ 0 N ~ satisfy CoM.n'M = M, where d9 is a sufficiently small neighborhood of  
(D, D') in E 2n~. For  any such (DM, DM'), the computat ion will end at some leaflM without 
taking an equality branch at any internal node. Let M[i , j ]  = {kij} ; then in some sufficiently 
small open set (9 _C_ ~ around (DM, D'M), the shortest distance from xi to zj (1 _< i , j  <_ n) is 
throughyk,, uniquely for each (D, D')  ~ d~, and furthermore, every (D, D ' )  E d9 leads to the 
same leaf IM. Since two rational functions agreeing in an open set must be identical, we 
know that the set of output functions {qij} at IM must be qo(D, D')  = d~.k~ + d'  k,,,j. It follows 

that no two distinct M ~ SR(n)  can have the same lm. Now if we prune all the equality 
branches from the tree A, we have a binary tree with at least ISR(n)  I leaves. The height of  
A is therefore at least log21SR(n)I, which implies L(n) >_ logz] SR(n)I.  [] 

The above argument does not apply when SR(n)  is replaced by R(n), since for M 
R(n), the set of (D, D') satisfying Co,o, = M in general does not contain an open set. 
However, in the more restricted model  of  linear decision trees, R(n) does provide a lower 

bound. 

THEOREM 2. Lo(n) >-- log3[R(n)l - 2n 2. 

PROOF. Let A be an optimal linear decision tree for computing the n x n matrix 
product D ® D'. Consider the algorithm A '  which begins with a sequence of  2n" tests 
{dij:0, d~j:O, 1 <_ i, j <-- n}, and then proceeds exactly as algorithm A, ignoring the 
outcomes of the first 2n 2 tests. Represented as a linear decision tree, the algorithm A '  has 
height Lo(n) + 2n e. We will show that, for algorithm A ', all input pairs of  distance matrices 
(D, D') reaching the same leaf must have the same connection matrix CD.O'. This will 
prove Lo(n) + 2n"- >-- log3lR(n)l, hence the theorem. 

Let ! be any leaf with output functions {q~j}. Let L/' = {g~ < 0, g2 < 0 . . . . .  g, < 0, 
h~ = O, h2 = 0 . . . . .  ht = 0} be the system of  linear inequalities and equalities obtained 
along the path from the root to 1. Then for any I _< i , j ,  k < n, q~j(D, D')  <- d~k + d'hj must 
be a consequence of  the system L~. Because of  the Farkas  Lemma (for inhomogeneous 
systems: see, e.g., [12, Theorem 1.4.4]), one can obtain q~j(D, D')  <-- d~k + d'kj by taking 
convex linear combinations of formulas in the system L# t3 {0 < 1}. But this process 
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actual ly  yields e i ther  " < "  or " = "  explicit ly.  Thus we actual ly  know at leaf  l w h e t h e r ~  
qij(D, D')  < dik + d'kj or qq(D, D' )  = dik + d'~j for all i, j ,  k. This proves that  the connection ~! 
matr ix  is de te rmined  at each leaf  reachable  by inputs, as was to be shown. 2 [ ]  

W e  regard the two preceding theorems as in format ion  bounds  on L(n) and Lo(n), :!~ 
• n 2 . . n 3 . . ; ,  

respectively.  As  there are n s imple n-ary matrices,  and 2 n-ary matr ices,  o f  which SR(n) 
and R(n) are subsets, respectively,  Theorems  1 and 2 could  potent ia l ly  give lower bounds 
of  the order  n21og n or higher.  The character iza t ion and enumera t ion  o f  SR(n)  and R(n) 
will be the subject  of  Sections 3 through 5. First  we define the Tr i angu la r  po lyhedron  T (~) 
and  relate it to our  present  approach• 

2.3 THE TRIANGULAR POLYHEDRON T (~). A set Z in E N is a polyhedron i f  Z - -  

{.~1.~ E E s,  li(x) --< 0, i = I, 2 . . . . .  m}, where m is an integer, .~ = (xl ,  x2 . . . . .  x s ) ,  and 
l i(x) = Y.]<_~<_n co x j  - c~ for real numbers  cij, c~. To each subset J _C { 1, 2 . . . . .  m} (possibly 
empty) ,  let F j ( Z )  = {-'?1 li(x) < 0 for each i E J; I,(.~) = 0 for each i ~ J} .  We call F j ( Z )  
a f ace  o f  dimension t of  Z i f  F j ( Z )  ~ ~ and the smallest  subspace o f  E N conta in ing F j ( Z )  
has d imens ion  t. Let ~,~(Z) be the set of  faces of  d imens ion  t of  Z for 1 _< t _< N. (For  more 
informat ion  on polyhedra ,  faces, etc., see [7, 12]•) 

The  Triangular polyhedron T (n) is a po lyhedron  in E s for N = (9). Let H = { ( i , j ) l  1 -< 
i <_/'_< n} and Y. = {(i , j ,  k ) l ( i , j )  ~ H, 1 <_ k <_ n and k ~ i, k ~ j } .  Wri te  a vector in E ~v 
as x = (xi~, ( h i )  E FI). Then  T ~) is def ined by 

T ~ = {x l x i j  >_ 0 for ( i , j )  E H, xii <- xik + xki for ( i , j ,  k)  E Y~}, 

where 3 we interpret  xik to be xk~ if  i > k. 

THEOREM 3. I t-I~0 ~ ( T ( ' ) ) I  ---< IR(n) l, where N = (9). 

COROLLARY• I~ (T(~ ) ) I -<  IR(n)l .  

PROOF. It suffices to establish a one- to-one  mapp ing  ~ f rom tJ~0 o~,(T~n~), i.e., the set 
o f  all faces o f  T ~ ,  into R(n). Write  liik(x) = xi~i - xi~ - xhi for ( i , j ,  k)  E Y~. Let F b e  a face 
o f  T ~ ,  specified by a par t i t ion of  r I  into II]  u H2, E into Yl t.J ~2, such that  

F =  {~lx~j > 0 if  ( i , j )  ~ 1-I~, I~i~ < 0 if  ( i , j ,  k) ~ Yl, 
and x~ i = 0 if  ( i , j )  U H~, lij~ = 0 if  ( i , j ,  k) ~ Y~2}. 

We now define ~ ( F )  to be the n x n n-ary matr ix  M, given by 

M [ i , j ] = M [ j , i ] =  { k l ( i , j , k )  U~,2} t_J { i , j}  if  i < j ,  

and 

M[i,  i] = {kl  {(i, k), (k, i)} ~ lI= # ~}  t.J {i}. 

The  mapp ing  ep is one- to-one,  as ~2 and I-I2 can be reconstructed from ~o(F). 
To comple te  the p roo f  of  the theorem, it remains  to show that  ~ ( F )  defines a real izable 

matr ix  M. Choose  x = (xo, l <_ i < j <_ n) to be any point  on F. Define a dis tance matr ix  
D = (do) from ~ by letting 

dii = dji = xij for l <_ i < j <_ n, 

and 

d i i = O  for l _ < i _ < n .  

It is easy to check that  D ® D = D. It follows that  the connect ion  matr ix  Co.o is given by 

C o . D [ i , j ] = C D . D [ f i i ] = { k l l ~ y ~ ( ~ ? ) = O , l < - - k < - - n } U { i , j }  if  i < f i  

2 We introduced A' in the proof for the following reason: The system of constraints ~'at a leaf of A contains the 
2n 2 "mixed" constraints d,~ >_ O, d~ > 0 which are neither equalities nor strict inequalities. 
'~ David Avis pointed, out that the conditions xv > 0 are implied by the other conditions in the definition of T"  
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and 

CD.D[i, i] = (klxik = 0 or xk, = 0, 1 _< k _< n} tA (i}. 

This proves that ~0(F) = M = Co.o. The proof  of  the theorem is complete. [ ]  
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3. A Characterization of  Simple Connection Matrices 

We will give a necessary and sufficient condition for a simple n-ary matrix to be a 
connection matrix. We first define some useful concepts. 

Definition 4. The weight distribution W ( M )  of an n-ary matrix M is the integer matrix 
defined by W ( M ) i j  = [M[i, j ]  1. The sum ~i./ [M[i, j ] [  is called the total weight of  M, 
denoted by w(M). 

Example 2. Let 

M ( 
1 ,2 ,3  3 

The weight distribution of  M is 

W ( M )  = l , 
1 

with total weight w(M) -- 13. 

Definition 5. Let M be an n-ary matrix of  dimension m × p. For  l _< i ~ m, the ith row 
signature of M is the vector 7 (i) = (r~ i~, r(~ i~ . . . . .  r(f), where r~ i~ is the number  o f  times 
integer l appears in the ith row. For  1 _<j _<p, thef lh  column signature ~(J) =(c~ j), c~ j) , 
. . . .  cl / ' )  of M is defined in a similar way, i.e., c//) is the number  of  occurrences o f / i n  the 
j th  column. The sequence of  m + p vectors ~"), ~2~ . . . . .  ~(m), ~ )  tS(.,) . . . . .  Sw)) is then 
called the signature of  M, denoted by s(M). 

In Example 2 above, the row signatures o f  M are 7 ") = (1, 2, 2), r t2) = (2, !, 0), and 
;'~' = (1, 2. 2); the column signatures are ~(~ = (2, 1, 2), ~2) = (2, I, !), and ~3) = (0, 3, 1). 

Definition 6. An n-ary simple matrix M is said to be s-unique if no other n-ary simple 
matrix M'  can have the same signature as M. 

We will show that, for a simple n-ary matrix M, the property of  s-uniqueness is the 
answer to the question of  whether M is realizable as a connection matrix. 

THEOREM 4. Let M be an n x n simple n-ary matrix. Then M E SR(n) if  and only i f  M 
is s-unique. 

P R O O F  

Necessity. Let M be a simple n-ary matrix such that M = Co.o, for distance matrices 
D = (dr) and D' = (d~). Assume that there exists another simple n-ary matrix M '  # M 
with s(M') = s(M). We will show that this leads to a contradiction. 

Write M = (too) and M '  = (m~). We have 

di . ,%+d~,, . j--<di. , , , ; j+d~;ri  for 1 <_i,j<_n, (1) 

by the definition of the connection matrix Co.D,. Furthermore,  the inequality (1) is strict if 
m,: # m;~. Adding up the n 2 inequalities in (1) we obtain 

Z Z &,-,, + Z Z d;,.j < Z Z d,,,.;~ + Y. Z d';,j, (2) 
i j j t i j j 

where the inequality is strict since m , /#  m~./for some i,j. Now, by the definition of  the row 



434 R . L .  GRAHAM, A. C. YAO, AND F. F. YAO 

and column signatures 7"), ~J~ of  M and 7 '"~, ~-'~ of  M' ,  respectively, (2) is equivalent to 

E E r~ i'da + E E c~'~d~Y < E E r't'i'da + E E c;"~d'ly • (3) 
i l j l t I j 1 

But by assumption M and M '  have the same signature, so the left-hand side of  (3) is equal 
to the right-hand side, which is a contradiction. This proves the necessity o f  s-uniqueness 
for a simple connection matrix. 

Sufficiency. We next show that if a simple n-ary matrix M is s-unique, then there exist 
distance matrices D and D '  such that M = CD.o.. What we look for are D = (do-) and 
D '  = (d[y) that satisfy the following system of inequalities: / ° '  gi.z.,p( , D ) = (d~. + d~,.) - (dip + d~A < 0 

for a = m o ,  f l # a ,  l < _ i , j < n ,  
(5a) hi,j,.,.(D, D')  = (di. + d ' i )  - ( d i .  + d'y) = 0 

for a = m o ,  l<_ i , j<_n .  

Assume that the system (,9°) has no solution. We will show that this implies M is not 
s-unique. First note that ( ~ )  contains at least one strict inequality gi.z~.p < 0, for n _> 2. By 
the theorem of  Kuhn-Fourier  (see [12, Theorem 1.1.9]), ( i f )  istrot solvable only if there 
exist nonnegative numbers ~,~,y.,,p such that 

l<--i,j<--n l~i,j<_n 
a-mi i  a--m O- 

= ( O . d n  + . . .  + O . d  O + . . .  + O.dn , , )  + ( 0 . d i ~  + . . .  + 0 . d ~ +  . . .  + 0 . d ' , ) ,  (4 )  

where ~,~,y,.,p > 0 for the coefficient of  some g;,z..a. We can scale the coefficients in (4) so 
that every ~, is <_l/n, except for ~,~,j. .... The values of  ~;,y,o.. (1 < i , j  < n, a = too) can be 
chosen freely in (4) since hi,i~,. = O, and we shall choose them so that for any fixed i,j, and 
Ot = m/j ,  

Z ~i.j.,,., = I. (5) 
l~fl~n 

Let us rewrite (4) as 

E E Xl,j~dd~ + d ' j )  = 
l<--i,j<_n l<_fl<_n l<--i,j<--n l~.B<_n 
a~mij  a--m O. 

By eq. (5), the left-hand side of  (6) is 

or, equivalently, 

E (dio + d ' A ,  
l<--i,j<_n 
a--raij 

~i,y~,B(dip + d'p:). (6) 

~t "0, (7) 
l<.i<_n l<--I<n l<--j<_n l<_l~_n 

where ~i) c~j) r I , are the row and column signatures of  M. By comparing the coefficient of  
each variable da, d~l in (7) with that in the right-hand side of  (6), we obtain 

~ki,j,a,I -~" r~ i) for 1 --< i _< n, 1 _< 1 < n, (8) 
l<_j<_n 
airnij  

~ k i , j , a , l = C ~  j )  for l<_j<_n,  l < _ l < n .  (9) 
l<_i<_n 
a--rnij 

The equalities in (8) and (9) are best represented in terms of  a network flow problem. 
Let .A/'(M) be a network with source S, sink T, and, in between, three levels of  nodes, with 

R"~ (1 < i, 1_< n), on the n 2 nodes on each level (Figure 2). The nodes on the first level are --t - 
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R(11) _(1) 

e(1 n) r(111 (1 n) ~ V;,n 

/ A n) R(1) V2,1 
/ /  rl • 

2" : (n) 
S R 2 V2, n T 

(1) i r(n)~~ 

Rn Vn, 1 

R(n n) Vn n I= C~ n) 
FIG. 2. Network.l'(M). 
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second level V 0. (1 _< i, j _< n), and on the third level C(/) (I _< j, 1 _< n). Each R~ ~ is 
connected with the source and the n nodes Vo (1 _<j _< n); each C~ j) is connected with the 
sink and the n nodes V o. (1 _< i _< n). We shall consider maximum flows in ~4r(M), subject 
to the following capacity constraints on the nodes (cf. [7]): Node --t/~(i) has capacity r t ti~, node 
C~t j~ has capacity c~ yl, and node Vo has capacity 1. 

The value of  a maximum flow in .AP(M) is clearly at most ~i Y.i r~ i~ = Y.j El c~ J~ = n 2, if 
all nodes are saturated to their capacities. We will demonstrate two flow functions.v* and 
)7 that can achieve this maximum. Each function assigns the same value to both arcs 
(Rl i~, Vii) and (V u, C]J)). We denote this value by y*(i,  j, l) and )7(i, j ,  1), respectively. 

In the first maximum flowy*, we let 

1)=[1 if l=mu, y*(i,  j ,  ( I0) 
to otherwise. 

There is one unit of  flow through every node Vu. Furthermore, each node R~ i~, C~ j~ is 
balanced and saturated by definition of  the capacities r~ ~, c~ i~. 

The other flow function )7 makes the assignment 

)7(i, j ,  1) = Ai.j.o.t, (I 1) 

where a = mu. The amount of  flow through V u is 

Z )7(i,j, 1) = 1 
l~l~_n 
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by eq. (5). The total flow out of  node R/") is 

fi(i, j ,  l) = ~ )~i.j.,.t = r~ i~ 
l~<_n l ~ _ n  

o~mtl 

by eq. (8); similarly the total flow into node C} j~ is 

Y. y( i , j ,  I) = ~ X,j.,,., = c~ j '  
l<_i~n l~i~n 

a~rall 

by eq. (9). Therefore )7 also defines a maximum flow in ./if(M). Note that y*  and fi are in 
fact two distinct flow functions. This is so because ~i./.,.p > 0 for some i, j, a = mii, and 
fl ~ a when we formed eq. (4); it then follows from definitions o f  y* and fi in (10) and (l l) 
that to the particular arc (R~ i~, Vii), with l = fl, we have 

y*( i , j ,  1) = O, ~(i , j ,  1) > 0. (12) 

We are now ready to derive a contradiction that M could not be s-unique. Formulate the 
maximum flow problem for A:(M) as a linear program in the standard way 
(e.g., [8, Chapter 8]): 

maximize z = c.y,  
subject to A .y = b, y _> 0, 

with suitable vectors b, c, and matrix A. It is known [8, Theorem 8.8] that in the present 
case, when A is unimodular and b is an integer vector (representing the capacity constraints 

• in Mr(M)), the bounded polyhedron Y defined by Ay  = b, y >- 0 has the property that all 
of  its extreme points have integer components. Let us writefias a convex linear combination 
of  the extreme points of  Y (this is always possible; see [ 12, Theorem 2.12.2]), 

f i = ~ . a h y k  where ak-->0, ~ a s =  1. 

Since t7 # y*, we must have ak > 0 for some extreme point yk with yk # y*. Denote this yk 
by y ' .  Because of  (12), we can further assume that y '  is chosen such that 

y ' (L j ,  1) > 0 (13) 

for the particular triple (i, j, 1) in (12). By the theorem quoted above, y '  has integer 
components. Furthermore, since z is a concave function of  y, that is, 

c _-c 

= ~ ak(c.y,)  
ab~.O 

_ m a x  c.yk, 
a,~>O 

the fact that z is maximized at fi implies that it must be maximized at all yk with as > 0. In 
summary, we know that ( i )y '  is a maximum flow for ~4r(M), distinct f romy* and satisfying 
(13); (i i)y'  has integer assignments to all arcs in ~P(M)--in fact the assignments are 0-1 
valued since the total flow through any V 0 is 1. 

We now define a simple n-ary matrix M'  = (m~) corresponding t o y '  by letting m~. = l, 
where i is the unique integer with y'(i, j, 1) = 1. The fact that all nodes R~ il and Ct tj~ are 
saturated under y '  implies that M '  has row and column signatures as given by r[ il and 
cI i~. Note that M '  # M since rn~ = I by (13), while rn 0 # I by (10) and (12), for some triple 
(i,j, 1). But this contradicts the assumption that M is s-unique. We therefore conclude that 
the system (~:) can be solved to find D, D '  such that M = Cv.o.. The proof of  Theorem 4 
is thus complete. []  
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4. Bounds on the Number o f  Simple Connection Matrices 

On the basis of the characterization derived in the previous section, we shall find bounds 
on the number of  n × n n-ary simple matrices that are realizable. 

T H E O R E M  5. ( C/n)n/24 n~ <- [SR(n)l <- 42n2, f o r  some constant C > O. 

PROOF. We first show the upper bound. By Theorem 4, an n × n n-ary simple matrix 
M is in SR(n) only if M has a unique signature among simple matrices. Therefore 
I SR(n)[ cannot be greater than the total number of  such distinct signatures. In a signature 
(s :.1~, t :~2~ . . . . .  i I"~, E I'~, E ~2~ . . . . .  E~"l), each component i "1 = (r~ i~, r~ i~ . . . . .  r~ i~) can be 
viewed as a partition of  integer n into n labeled parts. Thus each F "~ can take at most 
(,+,-l~ < 4" different values. It follows that the total number of  distinct signatures (for n - I  P - -  

simple matrices) is at most (4") 2" = 42"~. This proves I SR(n)I  <_ 4 "-"~. 
The rest of this section is devoted to the proof of  ISR(n) I >- (C/n)"/24 "='. We define a 

class of  matrices, called row-ordered matrices, and show that they have the property of  
being s-unique. It follows from Theorem 4 that they are all in SR(n).  A demonstration that 
there are at least (C/n)"/24 "2 such row-ordered matrices then complete the proof. 

Definition 7. A simple n-ary matrix is row-ordered if the entries are nondecreasing 
along each row. For example, the following matrix is row-ordered: 

3 4 
2 2 
2 3 

THEOREM 6. A row-ordered matrix is s-unique. 

PROOF. Let M be a row-ordered matrix, and let (7"~), ( ~ )  be its row and column 
signatures. We shall show that M is the only simple n-ary matrix whose signatures are 
(7"~) and (~lJ~). 

Let M be any simple n-ary matrix with signatures (7 "~) and (~J~). Clearly .~ must have 
the same dimensions as M. We shall now prove that the signatures determine which entries 
of  ~" contain a 1, which entries contain a 2 . . . . .  etc. 

Let a be the smallest integer that appears in .,~. Note that a is uniquely determined by 
the signatures. We first show that the positions (L j )  in At where a occurs are determined 
by the signatures. 

LEMMA 1. 371[i, j1 = {a} i f  and only i f  r~i~ > j.  

PRooF. As (;"~), ({~J~) are signatures arising from the row-ordered matrix M, we have 

c~" -- I{il r~ i' -> !} l, (14) 

and, in general, 

cL j~ = I{i I r~a i) > j }  1. (15) 

We can now prove the lemma by induction on j. 

j = 1. The only positions (i, 1) in the first column of ,Q  where a may appear are those 
with r~ ) ~ 1. But, by (14), we must actually place a 's  in all such positions in order to satisfy 
the requirement of having c~d ~ a's in the first column. 

Induction step. Suppose the lemma is true for all j _< jo. We will prove it f o r j  = j0 + 1. 
Consider the (j, + l)st column of  3~. By the induction hypothesis, each row i has had 
exactly min{r~i~,jo) a's  appearing in column 1 through column j0. Therefore, only those 
rows/with r~, ~ >-jo + 1 could have a 's  appearing in the (jo + l)st column. By (15), all such 
rows must actually have a 's  in the (jo + l)st column in order to satisfy (15). This completes 
the induction step of the lemma. []  
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PROOF OF THEOREM 6 (CONTD.). Now we complete the proof of  Theorem 6 by induction 
on a, the smallest integer that occurs in A), for a = n, n - 1 . . . . .  1. When a = n, )~ has 
integer n in every entry, and this is obviously uniquely determined from the signature. 
Suppose it is true that M -- M whenever a >- ao + 1; we will prove it for a -- ao. By the 
preceding lemma, the positions in )0' where ao occurs are only dependent on the signature. 
Therefore M and M have ao at exactly the same positions. Now replace the a0's in both M 
and 3~t by ao + 1 and call the new matrices M '  and /l~t', respectively. Clearly this 
transformation still leaves M '  and M '  with the same signature, and M '  is again a row- 
ordered matrix. By the induction hypothesis, since the smallest integer in )~t' is a0 + 1, we 
must have 3~t' = M'.  But this implies that, before replacing ao by ao + 1, it must be true 
that )~ --- M. This proves Theorem 6. []  

It is easy to see that any matrix which can be transformed into a row-ordered matrix 
through row and column permutations is also s-unique. 

PROOF OF THEOREM 5 (CONTD.). We now count the number o f  row-ordered matrices. 
As demonstrated earlier, the number of  choices of  ~(i) is  (2n_.--II) ~--" ½(2nn ) = ( l /2 , f~n)4  ~. 
(1 + O(l/n))  >_ (C/n)~/24 ~ for some C > 0. Therefore the number of  possible signatures 
(Tt~, 7¢z~ . . . . .  7~'~) is at least (C/n)"/24 "~. Since every such signature can be achieved by 
some row-ordered matrix, we have established that there are at least (C/n)~/24 ~2 row- 
ordered matrices and hence I SR(n)[ >- (C/n)"/~4 ~. This completes the proof o f  Theo- 
rem5. []  

5. Enumeration and Characterization o f  General Connection Matrices 

We extend the preceding results about SR(n) to R(n), the set o f  all connection matrices. In 
Section 5.1 we introduce the notion of  "spanning matrices" and discuss their properties. 
The results are used in Section 5.2 to derive an upper bound o fC  n~ on IR(n)l, which by 
Theorem 3 is also an upper bound on the number of  edges of the Triangular polyhedron 
T ~n~. Finally a characterization of  R(n) similar to Theorem 4 is given in Section 5.3. 

5.1 SPAr4~ING MATRICES. Let M be any n x n n-ary matrix. Define Y~t to be the 
following induced system of linear equations: 

SaM : hi,i,,,a --- (d~ + d',~) - (dia + d'Bj) = 0 
for a, f l ~ M ( i , j ) ,  a # f l ,  l<_i , j<_n.  (16) 

As there are only 2n 2 variables d o. and d,~., at most 2n 2 of  these equations can be linearly 
independent. Choose any fixed maximal independent subset L, a o f ~  (clearly [-~] _< 2he). 
We define an n-ary matrix H by 

f M [ C j ]  if [g[ i , j ] [  = 1, (17) 
H[i, j]  = ] {alhi,j.~,l~ -~ 0 is in .CPfor some/~} 

L t.J { f l [ h i j . , . , = O i s i n ~ f o r s o m e c ~ }  if [M[i,j][ > 1. (18) 

An n-ary matrix H obtained this way is called a spanning matrix for M. The total weight 
of  H clearly satisfies w(H) ___ n 2 + 2 [ ZP[ _< 5n 2. A basic property of  H is the following: For 
a pair of  distance matrices D and D',  if it is known that min{d,k + d~i[l --< k <_ n} is 
achieved by every a ~ H[i, j] (for all 1 _< i, j _< n), then it is also achieved by every a 
M[i,j].  Formally, we have the lemma following Definition 8. 

Definition 8. For two n-ary matrices M and M',  we say M '  C_ M i fM'[ i , j ]  C_ M[Lj ]  for 
all i, j. 

L~MMA 2. Let H be a spanning matrix o f  an n x n n-ary matrix M. l f  M '  E R(n) is a 
connection matrix and H CC_ M' ,  then M CC_ M'.  

PROOF. Let M '  = Cg.t~.. By the assumption that H __. M',  we have for any L j, 

a~, + t]~,/_< a~ + d~j, l< -k<_n ,  a ~ H [ i , j ] .  (19) 



Information Bounds A re Weak in the Shortest Distance Problem 439 

This implies h,q,,/~(/3, / ) ' )  = 0, I "~ i , j  ~ n, a, fl ~ H[i,j], a ~ ft. As H is derived from a 
maximal independent subset of  SPin in (16), we have 

h,.:.,./,(D,D')=O, l<_i, j<_n, a, f l E m [ i , j ] ,  a # f l .  (20) 

Formulas (19) and (20) imply that, i f]M[i,j][ > 1, then 

a~,, + aT:,/~ ~k + d~, l ~ k < _ n ,  a ~ M [ i , j ] ,  

and therefore M[i, j] C M'[i, j]. 
If[M[i,j]] = 1, then M[i,j] = H[i,j] C_ M'[i,j]. [] 

THEOREM 7. Let H and H' be spanning matrices for connection matrices M and M', 
respectivel.v. I f  H and H' have the same weight distribution and the same signature, then 
M = M  '. 

If a connection matrix M is simple, the only spanning matrix for M is itself. In this case 
the above theorem becomes a weaker form of  the s-uniqueness condition for M in Theorem 
4 (weaker because M '  is assumed to be a connection matrix). 

PRoOf. Since H and H '  have the same weight distribution, I H[i,j][ = [H'[i,j][ for all 
i, j .  Let us match the elements of  H[i, j] and H'[i, j] in disjoint pairs as Qo = {(a, 3)}, 
where a E H[i,j], fl ~ H'[i,j], and I ao[ = [H[i,j]l. 

Let M = CD.o. for D = (dis) and D'  = (d~j); we can write down the following set of  
inequalities: 

.~,~ : Eli. + d~,j <~ d i  B + d'Bj for (a, fl) ~ Qo, 1 ~-~ i, j _ n, 
with equality only if fl ~ M[i,j]. 

When we add up the w(H) inequalities in ~ ,  we obtain 

~ r~i)dit + ~ ~, c~S~db <_ ~, ~ r'{i~dit + ~ ~ c't(J~d~j, (21) 
i l j l i I j 1 

with equality holding only if H' C_ M, where (r} i~, c~ j~) and (r't "~, c't ~j~) are the signatures of  
H and H' .  respectively. Since by assumption H and H '  have the same signature, the two 
sides in eq. (21 ) are equal. Therefore H' C M. By Lemma 2, this implies M' C_ M. 

A similar argument shows M C_C_ M' .  Hence M = M' .  []  

5.2 A C": BOUND FOR [R(n)[. We will show that there are at most C "~ connection 
matrices (out of the 2 ~:' n × n n-ary matrices). 

THEOREM 8. I R(n) ] <-- C"" for some constant C. 

C O R O L L A R Y  

I U ~(T~)I-< C"". 
O<_s_<( ,", ) 

PROOV. For each M E R(n), choose a spanning matrix HM. By Theorem 7, all the 
weight distribution-signature pairs of  HM, i.e., (W(HM), s(HM)), are distinct. Furthermore,  
the total weight of H.~ satisfies n 2 <_ w(HM) <. 5n". Therefore [R(n)l is bounded by the 
product u.v. where u is the number of  ways for distributing a total weight A, n 2 ~ A 

5n e, to the n ~ entries in the n × n matrix and v is an upper bound on the maximum 
number of distinct signatures under any fixed weight distribution (with total weight n" -< 
A ~ 5n'-'). We will show that u _<(64) "~ andv  <_ c "~ for some constant c, which then implies 
the theorem. 

The number u is bounded by the number of  ways of  partitioning the integer 5n 2 into 
n" + I labeled parts, where the last part specifies 5n 2 - A. Therefore 

{5n'-' + n e) < 2~,.-, = (64)"". 
U ' < \  /,/2 - -  

To estinaate v, let bw be the total number of  distinct n-tuples of row signatures 
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(~.), ~(2~ . . . . .  Y"~) subject to a fixed weight distribution IV. It then follows that v 
maxw(bw) 2, where we have restricted W to those with total weight n 2 _~< .4 _< 5/'/9. For any :!i 
such W, let us regard every (~t,, ~(2~ . . . . .  Y"~) as an n x n  matrix whose (i,j)th entries are 
rj(i) • It follows that bw is bounded by the number of  ways of partitioning the integer A into 
n 2 labeled parts. Thus 

It follows that 

This completes the 
Theorem 3. []  

bw <- ( A + n2 _ l l)<2't+"~-~<26ne.-- 

v _< ( 2 6 ~ )  2 = 212~. 

proof of  the theorem. The corollary follows immediately from 

We have not tried to obtain the best constants C in the above proof. David Avis reported 
(private communication) that, by sharpening the above arguments, the constant C in the 
Corollary to Theorem 8 can be taken to be 2 272. 

5.3 CHARACTERIZATION OF CONNECTION MATRICES. We will state a necessary and 
sufficient condition for an n-ary matrix to be a member of  R(n). The proof is a slight 
extension of  that given for Theorem 4 and hence will not be repeated. 

Definition 9. A multiset U is analogous to a set except that an element may appear 
more than once in U. We use I UI to denote the total number of  elements appearing in U. 
Thus I UI = 6 for U = {l, 2, 2, 2, 3, 3}. 

Definition 10. An n-ary multimatrix M is a matrix where each entry M[i,j] is a multiset 
whose elements are drawn from [l, 2 . . . . .  n], with I M[i, j] l  <_ n. 

The concepts of  weight distribution and signature defined in Section 3 can also be 
generalized to an n-ary multimatrix in the obvious way. 

Definition I I. For two n-ary multimatrices M and M' ,  we say M '  _C M if every element 
that appears in the multiset M'[i,j] also occurs at least once in M[i,j],  for 1 _< i , j  <_ n. 

We generalize the definition of s-uniqueness to n-ary matrices as follows. 

Definition 12. An n-ary matrix M is said to be s-unique if for any n-ary muhimatrix M '  
with the same weight distribution, s(M') = s(M) implies that M '  _C_C M. 

THEOREM 9. Let M be an n × n n-ary matrix. Then M ~ R(n) if and only if M is s- 
unique. 

6. Enumeration of the Patterns of Shortest Paths 

In this section we examine an information bound based directly on the solution space of  
computing shortest distances. Let G be a directed complete graph on n vertices 
{vl, v2 . . . . .  vn}, with a nonnegative distance d~j assigned to each edge (v,, b). A path from 
vi to vj is a finite sequence of  vertices (i = ko, kl, k2 . . . . .  k m - b  km = j ) ,  not necessarily all 
distinct. The length of such a path is ~ t~ ,~  dk~_~.~,. We shall also consider the sequence of  
a single point (i) to be a path from i to i, called a nullpath, with length 0. The entry d~ in 
the transitive closure D* is then the minimum length of  any path from i toj.  For any L j, 
let p~j be the set of  all shortest paths in G from v~ to b- (The set Pii may be infinite.) We 
denote by pattern(D) the n × n matrix (pii) associated with the distance matrix D = (d,j). 
Let P(n) be the collection of  all distinct patterns induced by n × n distance matrices. By an 
argument similar to that used in Theorem 2, one can show that any linear decision tree for 
computing the shortest distance matrix D*, given D, requires at least log.~lP(n)l - n 2 
comparisons in the worst case. This, intuitively, is probably the best information lower 
bound one can hope for; the previous approach using connection matrices can be regarded 
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as a special case with the vertices divided into three disjoint sets Xo, X3, X2, such that all 
edges except those from Xo to X1 and  from X1 to )(2 are effectively oo. 

The rest of  this section is devoted to proving the following theorem, which states that no 
nontr ivial  lower b o u n d  can be obta ined even in the present version of  the informat ion-  
theoretic approach. 

THEOREM 10. [P(n)l  _< C"'~ f o r  some constant C > O. 

We first generalize the not ion  of  a connect ion  matrix to that for m + 1 consecutive sets 
of  "cities" Xo, X~, Xm. Assuming  that D It) --td~th . . . .  - - , - o ,  defines the distances between any 
pairs of cities in Xt-I X Xt, then Co,,, ..... D,-,,[i,j] is tO be the set of  best connect ing paths 
from city i E Xo to c i t y j  ~ Xm. Formally,  i f ( D  "~, D ~2~ . . . . .  D "~) is a sequence o f m  n X n 
matrices, then their m-connection matrix Co,,,. .... o,-,, is defined by 

Co,,,. .... D,m,[i,j] = {(a~, a2 . . . . .  am-~)l 1 --< a t - -  < n for all l, 
and  ao~ + d12~ .~m~ . 

~ l e t  I - - O 1 0  2 - ~ -  . * • - [ -  ~ a m _ l  J 

= min  ,-,o~ d~2~ + + dl,~_d)). 
~ U t k  I ~1- k l k 2  . . . 

k l  . . . . .  k i n -  I 

This definition reduces to the connect ion  matrix defined previously when  m = 2. 
Let Rm(n) denote the set of  all possible n X n m-connect ion  matrices. 

LEMMA 3. [R,~(n)] -< [ R ( n ) l m - ' f o r m  >_ 2. 

PROOF. We will show that, for m > 2, CD,, ..... D'~' is determined by Co,,, ..... D"-" and  
CA.D'm', where A = D ~u ® D ~2~ ® . . .  ® D ~r"-'. This  will imply that IRm(n)[ -< [Rm-~(n)[" 
I R"-(n) I. The lemma then follows by induct ion,  observing that [R2(n) [ = I R(n) 1. 

Let A = D "~ ® D ~2~ ® . .  ® D ° ' -u  Since mink,. ~a~,~ .tl,,~ 
• . . . . .  k m _ l ~ U i k l  "~- . . .  ~,- I d k m _ l J ]  

mink,,,_,(mink,, rd~'~ d ~ - "  - a~,-~ .... k,_=~ ik, + - . .  + k._~k=_,) + ,,k=_,,, an  al ternative description of  
CD,,,. .... U,,,,,[i, j ]  is the set o f  (a~ . . . . .  a,,,-2, am-a) such that a,,,-1 ~ CA.o,o,,[i, j], and  
(a~ . . . . .  a,,-2) ~ Co,,,. .... o ..... [i, am-a]. This  proves that Co,,,. .... o,~, is de termined by 
CD,,,. .... D ...... and CA,D'm,. [] 

PROOF OF THEOREM 10. We shall derive a recurrence relation on [P(n)[.  We use the 
idea employed in [1] for reducing the shortest paths problem to {min, + )  mult ipl icat ion.  
Let X be any 2n x 2n distance matrix on  vertices { 1, 2 . . . . .  2n}. We write it in the form of  
four n x n blocks 

distances matrix X* then satisfies the following recurrence formula 

X , = (  E* E* ® B ® D* ) 
D* ® Y ® E* D* ~ (D* ® Y ® E* ® B ® D*) ' (23) 

where E = (A @ (B ® D* ® Y)). Actually, implicit  in the derivat ion of  (23) is an 
enumera t ion  of  all possible shortest paths between any  two of the 2n vertices in terms of  
quantit ies involving only n x n matrices. We now make this s tatement  precise in a lemma. 

Definition 13. Let g and  g '  be the n x n matrices of  O's and  _ I's defined below: 

6~j= if  (A)o ( B ® D * ®  Y)o, 

d~j = if (D*)o ( D * ®  Y ® E ® B ® D * ) o .  



442 R . L .  GRAHAM, A. C. YAO, AND F. F. YAO 

Define the counting vector #(X), for X as in (26), to be/I(X) = (pattern(D), pattern(E), 
CE*.B.D °, CD°.Y.E °, CD'.Y.E*.B.D*, CB.D*.Y, ~, O#t). 

LEMMA 4. The matrix pattern(X) is determined by the counting vector #(X). 

PROOF. We shall show that the (i,j)th entry ofpattern(X) is determined by it(X) for all 
i,j. 

First we assume I < i , j  <_ n. Following the original argument [1, p. 204] leading to (23), 
any path from vertex i to vertexj  can be written uniquely as 

(i = ko, ol, kl ,  02, k2 . . . . .  kt-l, or, kt . . . . .  Om, km = j ) ,  

where each kt ~ { 1, 2 . . . . .  n} and each ot is a sequence of  vertices (possibly empty) in 
{n + 1, n + 2 . . . . .  2n} (m may be 0 when i = j ) .  A shortest path from i t o j i s  characterized 
by the following conditions: 

(a) Each kt-~otkt is among the shortest such paths from kt-~ to kt; denote this length by 
leng(kt-t, kt). 

(b) The k's satisfy the condition that ~ leng(kH, kt) is minimum for all possible choices 
of  the k's. 

We can restate the conditions as follows. Let 

Q = pattern(E), 
Ast = {-J(h,h')~Cn,o..ds.t| [ pattern( D ) ]h.h', 

and let 1-' be the n x n matrix defined by 

f{X} if & , = - l ,  
F~t= t A,t if & t =  1, 

I.{A} UA, ,  if & t = 0 ,  

where we use k, for the null sequence. Then condition (b) is equivalent to (ko, kl . . . . .  k,,) 
U Qii and condition (a) is equivalent to at ~ I'k,_,k, for 1 _< 1 --< m. But this implies that the 
(i,j)th entry of pattern(X), i.e., the set of  all shortest paths from i to j,  is determined by Q 
and F and hence bypattern(E), pattern(D), Cn,o..Y, and o ~. This proves the lemma for the 
case 1 _< i, j _< n. 

Similarly, one can show that the set of  shortest paths from i to j is determined by 
pattern(E), Cn.o..v, d, and, in addition, 

CE..n.v- and pattern(D) if i _< i _< n, n + 1 _< j_< 2n, 
CD..V.E. andpattern(D) if n +  l <--i<_2n, l <_j<_n, 
Cn..r.~..n.o.,pattern (D), and # '  if n + 1 _< L j <  2n. 

We omit the details. []  

PROOF OF THEOREM 10 (CONTD.). To complete the proof of  Theorem 10, we note that, 
by Lemma 4, the number of  distinct patterns is bounded by the number of  distinct counting 
vectors. This leads to 

IP(2n)[-< [P(n)IZ.IR(n)IZ.IR(n)I2.IR(n)Ia.IR(n)[2.3 "2"' 

by Definition 13 and Lemma 3. 
Writingf(n) for I P(n)[ and using Theorem 8, we obtain 

f(2n) _< (f(n))2C 0~ for some constant C. 

Taking logarithms, 

lnf(2n) _< 2 lnf(n)  + n"ln C. 
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For n = 2 k this leads to (not ing t h a t f ( I )  = 2) 4 ( (_:y (ny ) 
l n f ( 2 n ) _ < ( l n C )  n 2 + 2  + 2  2 ~ + . . . + 2  k ~ + 2 ~ + q n f ( l )  

<_ 4n 21n C. 

This provesf (n)  _< C "~ i f n  is a power of  2. 
For  general n one can easily s h o w f ( n )  _<f(2 f~°g"]) by adding extra points with effec- 

tively ~ distances between these points and the other vertices. This  leads t o f ( n )  _< C 4"2 
immediately.  The proof  of  Theorem 10 is thus complete. []  

7. Other Applications o f  s- Uniqueness 

The s-uniqueness characterization technique used in this paper  might be useful in the 
study of other complexity problems. As an example we consider below a part icular  sorting- 
type problem. 

Let X = {x~, x2 . . . . .  x ,}  be a l inearly ordered set of  n distinct elements, and  let &, 
$2, . . . ,  S,, be specified subsets of  X. Consider  the problem of  comput ing  the m i n i m u m  
element of each Si by pairwise comparisons between the elements.  For  m = 2 this can be 
done in n - 1 comparisons by first comput ing y~, y2, ya (the m i n i m u m  elements in $1 Cl $2, 
S~ A &, S~ C~ &, respectively), followed by the computa t ion  of  rain{y1, y2} and  
min{y~, ya}. This scheme can be extended to solve the problem, for any fixed m, in n + 
O(l)  comparisons. However, for arbitrary m and  n, the problem does not  seem to be 
solvable in l inear time, i.e., using O(m + n) comparisons.  It is thus of  interest to study the 
quant i ty  I ( & ,  & . . . . .  Sin) =-- Iogff# of  possible answers), which is the information-theoret ic  
lower bound  in the decision tree model. We shall now demonstra te  that I(S~, $2 . . . . .  Sin) 
~ m + n, i.e., the informat ion  bound  is weak for this problem. In the following, the 
definitions for the terms "realizable," "signatures," and  "s-uniqueness"  are for this problem 
only and are different from their usage in earlier sections. 

Definition 14. Let L = (x q, xy~ . . . . .  x/~) be a list o f  representatives, i.e.,xj, E S~ for 1 _< 
i _< m. We call this list realizable provided that there exist a l inear  ordering of  X relative to 
which xi, = min {xtl xl  E Si} for l _< i ~ m. 

Let 2 ) denote the set of  all realizable lists o f  representatives. ( ~  depends  on S~, 
$2 . . . . .  Sin.) Obviously I(S~, $2 . . . . .  S,~) = Iog2}2 1. We shall prove that I ~ l  _< 2m+L This 
immediately implies I(S~, $2 . . . . .  Sm) <- m + n, as was to be shown. 

Definition 15. Let L = (x h, x/~ . . . . .  xy,,) be a list of  representatives and  let rk, 1 <_ k 
__. n, denote the n u m b e r  of  i such that j,. = k. We refer to the vector (r~, r2 . . . . .  r ,)  as the 
signature of L. The list L is s-unique if  no other list L '  has the same signature as L. 

THEOREM l 1. A list o f  representatives L = (xj~, xy., . . . . .  xyo,) is realizable i f f  it is s-unique. 

COROLLARY. I~'1 ~ 2~+°. 

PROOF 

Necessity. Let L '  = (xj.,, xj~ . . . . .  x j  be another  list o f  representatives having the same 
signature as L, and assume that X is ordered so as to realize L. Then  the mapping./',.----+ j~ 
induces an au tomorphism with the multiset {x./,, x/~ . . . . .  x/.,} which is nondecreasing,  and  
strictly increasing at least o n c e - - a n  impossibility. 

Suf)qcienc~,. Suppose that L is not realizable. Construct  the directed graph G whose 
vertex set is X and which includes precisely the edges(xz ,  Xk) such that xk E Si and  k # 
j,. The fact that L is not realizable implies that G contains  a directed cycle, say, 

(x~., x O  . . . . .  (xt,,_,, xt,,), (xt,,, x O. 

4 When n = I. pattern(D)= (pH). where p.  = {(I)} i fd .  > 0 andp.  = {(1). (I, I). (I, 1, 1), (1. 1. I, 1) . . . .  } if 
dH = 0. 
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By definition of G, there exist distinct hi, h2 . . . . .  ha such that xt,,, xt,,+, ~ Sh,,(l _< u < d), 
xta, xt, E S%, a n d  xt ,  is t he  r e p r e s e n t a t i v e  c h o s e n  f r o m  S^,, for  I _< u _< d. H o w e v e r ,  f rom 
the  sets  Sh~ we  c a n  p ick  i n s t e a d  the  r e p r e s e n t a t i v e s  xt~+, i f  u < d, xt~ i f  u = d. P i ck i ng  the  
s a m e  r e p r e s e n t a t i v e s  f r o m  t h e  r e m a i n i n g  S~ as be fo re ,  we  o b t a i n  a d i f f e r e n t  list o f  
r e p r e s e n t a t i v e s  w i t h  t he  s a m e  s igna tu re .  T h u s  L is no t  s - u n i q u e .  [ ]  

Im+n-Ii 2,n+n, COROLLARY. AS the number  o f  distinct signatures is at mos t  ~ n-t , < the corollary 
follows. [] 
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