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ABSTRACT. In the all-pair shortest distance problem, one computes the matrix D = (d,;), where d,, is the minimum
weighted length of any path from vertex i to vertex j in a directed complete graph with a weight on each edge. In
all the known algorithms, a shortest path p;; achieving d;; is also implicitly computed. In fact, logs(f(n)) is an
information-theoretic lower bound, where /f(n) is the total number of distinct patrerns ( p;;) for n-vertex graphs. As
f(n) potentially can be as large as 2", it would appear possible that a nontrivial lower bound can be derived this
way in the decision tree model. The characterization and enumeration of realizable patterns is studied, and it is
shown that f(n) < C"". Thus no lower bound greater than Cn” can be derived from this approach. It is proved as
a corollary that the Tnangular polyhedron T*, defined in £ by d;, = 0 and the triangle inequalities d; +
djx = dis, has at most C "* faces of all dimensions, thus resolving an open question in a similar information bound
approach to the shortest distance problem.
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1. Introduction

Let G be a directed complete graph on n vertices vy, vo, . . ., vn, with a nonnegative distance
d;; associated with each edge (v;, v)). In the all-pair shortest distance problem, one wishes to
compute the n X n shortest distance matrix D* = (d}), where d} is the minimum total
length of any path from v; to v; (see, e.g., [1]). Efficient algorithms for this problem were
devised by Dantzig [2], Dijkstra (3], and Floyd [5]. All these methods require at least Cn®
time in the worst case. More recently, Fredman [6] gave an algomhm with running time
O(n (log log n/log n)'?), which is slightly better than O(n®). Substantial improvements
over O(na), however, are yet to be found. On the other hand, no lower bound better than
Cn* is known to the all-pair shortest paths problem for programs with branching instruc-
tions. (Kerr [9) proved that Cn® steps are necessary for straightline programs with
operations {min, +}.)

A natural model incorporating branching instructions is the decision tree model, which
is used, for example, in the study of many sorting type problems (10]. Indeed, all the
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existing shortest paths algorithms mentioned above can be properly modeled by linear
decision trees, where the primitives are ternary comparisons “f({d;}) Z 0” with linear
functions f. An apparently promising approach to obtaining lower bounds for linear
decision trees was suggested by Yao, Avis, and Rivest [13). It was shown that, in this
model, Cn’log n comparisons are necessary to compute the shortest distance matrix if a
certain folyhedron T™ in (3)-dimensional Euclidean space (see Section 2.3) has at least
exp(Cn’log n) “edges,” ie., one-dimensional faces.'" An interesting question is thus to
determine if 7% in fact has that many edges.

While counting the number of comparisons made in a decision tree tends to underesti-
mate the “true” complexity of computing shortest distances (for example, Fredman [6]
showed that for any given n, there exists a linear decision tree with O(n*®) comparisons),
it seems to be at present the only hope for obtaining nontrivial lower bounds. In this paper
we examine an approach based on information-theoretic arguments. As will become clear,
a natural information lower bound is logs | P(n)| — n? where P(n) is defined as follows:
For any n X n matrix D = (dy) with nonnegative entries, let pattern(D) denote the n X n
matrix (py), where py; is the set of all shortest paths from vertex v; to v; in the graph G
associated with D. We define P(n) to be the collection of all distinct patterns obtainable
this way. As the cardinality of P(n) is potentially large (O(27'**"), even if we require each
pi to consist of a unique path), it appears hopeful that strong lower bounds could be
established. However, we will show that in fact log| P(n)] = O(n?); therefore no lower
bounds better than Cn® can be derived from this approach. The enumeration of P(n) is
based on a study of “connection matrices,” as described in the next paragraph.

Let D = (dy), D’ = (d})) be two n X n matrices with nonnegative entries. Then the
connection matrix Cpp for D and D’ has as entries

CD,D'[I',_]'] = {(Xl l<a<nd,+ d;, = min (dix + d;y)} for I=< i,jS n.
k

In Sections 2 through 5 we develop characterizations for R(n), the set of all “realizable”
connection mamces As a result, | R(n)] is shown to be of the orderC n* (here again, rather
short of its 2"° potential). In Section 6 we apply the scheme used in [1, p. 204] for reducing
shortest distances computation to {min, +} matrix multiplication to estabhsh a recurrence
relation involving | R(n)| and | P(n)| and thereby show that | P(n)| =C n

In another application of the concept of connection matrices, we show that, somewhat
unexpectcdly, each face of the polyhedron 7" mentioned earlier corresponds naturally to
a unique n X n connection matrix (see Section 2.3). Therefore T has no more than C™*
edges, which resolves the question in the polyhedron approach [13] as well.

2. Connection Matrix, Information Bounds, and Triangular Polyhedron

2.1 TrE {MIN, +} MATRIX MULTIPLICATION. A distance matrix is a matrix of non-
negative real numbers. For two n X n distance matrices D = (d;) and D’ = (d}), define
their sum A = (ay) = D @ D’ and product B = (b;) = D ® D’, respectively, by a; =
min {dy, d;} and b; = min{di + di;|1 =< k < n}. The multiplicative operation & is also
called the {min, +} matrix multiplication. It is well known [1, 4, 11} that the complexity of
{min, +} matrix multiplication is closely related to that of finding all-pair shortest
distances, i.e., computing the transitive closure D* = (d}) of a matrix D, where d% = 0 and
di=D®D*®D*®D ...);fori# j (D' = D"' ® D by definition.) We first focus
attention on the {min, +} matrix multiplication for its conceptual simplicity. The discus-
stons are then extended to the computation of shortest distances in Section 6.

We consider the computation of {min, +} -product for two n X n matrices in the decision
tree model. An algorithm in this model is a ternary tree. Each internal node contains a test
“f(D, D’):0” for some nonconstant rational function f of 2n” arguments. Each leaf of the

' It was incorrectly claimed in [13] that 7" could be shown to have exp(Cn®log n) edges. which would then imply
the Q(n’log n) lower bound. A revised version of [13] will appear as [14].
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tree contains a set of rational functions {g,;, i < i, j = n} on the 2n® variables {d,; d;}. For
any input (D, D"), the algorithm moves from the root down the (ree, at each node testing
and then branching according to whether f(D, D") is >0, =0, or <0, until 4 leaf is reached.
At that point the product B = D® D’ is given by b, = g;(D, D’). The cost of the algorithm
is defined to be the height of the tree. The complexity L(n) in this model is the minimum
cost over all such algorithms. When all the functions f, ¢y are restricted 10 be linear
functions, the model is called the linear decision tree meodel, and the corresponding
complexity is denoted by Lo(n). Trivially, L(n) < Lo{(n).
We shall be interested in a natural information-theoretic bound on L(n) and Lu(n).

2.2 CONNECTION MATRICES AND INFORMATION BounDs.  The concept of a connection
matrix has been defined in Section . We now give some illustrations and examine the
relationship between connection matrices and {min, +}-multiplication.

Consider the following interpretation of the product B = (b;) = D ® D’ (see, e.g., [1]):
Let X= {x1,xz ..., X0}, Y= {p1, Yo, ..., yu},and Z = {2y, 23, .. ., 2} be three disjoint sets
of cities, with di» and d}, being the distances from x; to yx and from y, to z,, respectively.
Then &y is the “shortest distance” from x; to z; via some intermediate city in Y. This
suggests another way of representing the product D @ D’, namely, we can list for each pair
[7, j] the set of all connecting cities y; for which dix + d}, achieves the minimum b;. Such
information can be tabulated into an n X 7 matrix Cpp, whose [i, jl-entry is the set of
integers {o|d;, + diy = mink(dix + di)}. Clearly Cpp is the connection matrix for D and
D', as defined earlier.

Example 1. For the graph shown in Figure 1, we have D = (30%)) and D’ = (};2"). The
connection matrix Cppris ', '}).

Not all matrices can be realized as connection matrices for some D and D’. For example,
there do not exist 2 X 2 distance matrices D and D’ whose connection matrix Cp - is
(). For if we assume that Cpp- = (;7) for some D = (d,) and D’ = (d}), we have then
four inequalities:

din + di < dhe + dby,
dio + dox < du + dia,
dy + do < dn + diy,
ﬂ'21 + d'iz < dzz “+ dlzz

Adding the above four inequalities together, one obtains () < 0, a contradiction.

Definition 1. An n-ary matrix M is a matrix where each entry M[/, j] is a subset of
{L,2,..., n}. An n-ary matrix is said to be simple if | M1}, j]| = 1 for all 7, j.

A connection matrix Cpp is an n-ary matrix of dimension m X p if D and D’ have
dimensions m X n and # X p, respectively. For simplicity, we will only consider the case
m = p = n, while noting that all discussions have immediate generalizations to rectangular
matrices. Thus, when there is no danger of confusion, an # X # #n-ary matrix will simply be
called an #-ary matrix.

As illustrated in the discussion above, not all of the 2*° # X n n-ary matrices are
connection matrices.

Definition 2. An n-ary matrix M is said 1o be realizable (as a connection matrix) if
M = Cp. for some distance matrices D, D’. Let R(n) denote the family of all » X n
realizable n-ary matrices M.

A subfamily of R(n) deserves special attention.
Definition 3. Let SR(n) be the subset of R{(n) consisting of all simple n-ary matrices.

We now give lower bounds to the complexity of {min, +}-multiplication in terms of
| R(n)| and | SR(n)|. It is plausible that to compute the shortest distance between x; and z,



Information Bounds Are Weak in the Shortest Distance Problem 431

" 15 “1

> -»> @

a " 20

15 10

Y2

FiG. 1. An example of a connection matrix.

X2 22

one has to find the best connecting cities ys. Thus there must be as many leaves as |R(n)|
(or [SR(m)|) in a decision tree. The logarithm of the number of leaves then gives a lower
bound to the height of a tree, which is usually referred to as the information-theoretic
bound.

THEOREM 1. L(n) = log:| SR(n)| for all n = 1.

PrOOF. Let A be any decision tree algorithm computing the (min, +}-product of
n X n matrices D ® D’. Let @ be the set of input pairs (D, D’) with all their entries
strictly positive and for which the test result is never zero at any internal point, i.e.,
[liea fi(D, D') # 0, where f; are the test functions at internal node i. Clearly 2 is an open
set in the Euclidean space E 2" and is dense in the positive quadrant (all coordinates =0).
For each element M € SR(n), choose Dy, D’ such that Cp,.p,, = M and (Du, Dm’) €
@, which can be done since, for any distance-matrix pair (D, D") with Cpp = M, all
(Da» D) € © N D satisfy Cp,,.p;, = M, where Ois a sufficiently small neighborhood of
(D, D’y in E**. For any such (Du, Du), the computation will end at some leaf Iy without
taking an equality branch at any internal node. Let M[j, j] = {k}; then in some sufficiently
small open set @ C 2 around (Dy, DY), the shortest distance from x; to z; (1 =4, j<n) is
through yx uniquely for each (D, D’) € 0, and furthermore, every (D, D’) € Oleads to the
same leaf . Since two rational functions agreeing in an open set must be identical, we
know that the set of output functions {g;;} at Iy must be g;(D, D) = dix, + d%,,j- It follows
that no two distinct M € SR(n) can have the same /. Now if we prune all the equality
branches from the tree A, we have a binary tree with at least | SR(n)| leaves. The height of
A is therefore at least loge| SR(n)|, which implies L(n) = loge| SR(r)|. O

The above argument does not apply when SR(n) is replaced by R(n), since for M €
R(n), the set of (D, D’) satisfying Cpp- = M in general does not contain an open set.
However, in the more restricted model of linear decision trees, R(n) does provide a lower
bound.

THEOREM 2. Lo(n) = logs| R(n)| — 2n*.

PrROOF. Let A4 be an optimal linear decision tree for computing the n X n matrix
product D ® D’. Consider the algorithm A4’ which begins with a sequence of 2n® tests
{d;:0. d;:0. 1 =< i, j < n}, and then proceeds exactly as algorithm 4, ignoring the
outcomes of the first 2n” tests. Represented as a linear decision tree, the algorithm A" has
height Lo(n) + 2n® We will show that, for algorithm 4’, all input pairs of distance matrices
(D, D) reaching the same leaf must have the same connection matrix Cpp. This will
prove Lo(n) + 2n® = logs| R(n)|, hence the theorem.

Let / be any leaf with output functions {gy}. Let £= {g1 <0, g <0, ..., g < 0,
hy=0.h: =0, ..., h, = 0} be the system of linear inequalities and equalities obtained
along the path from the root to I. Then for any 1 =, j, k=<n,qiD, DY=du+ d}; must
be a consequence of the system % Because of the Farkas Lemma (for inhomogeneous
systems; see, e.g., [12, Theorem 1.4.4]), one can obtain ¢;(D, D) = di» + d}; by taking
convex linear combinations of formulas in the system % U {0 < 1}. But this process
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actually yields either “<” or explicitly. Thus we actually know at leaf / Whether'
9i(D, D'y < d + d}j or q;;(D, D’) = dip + dj; for all i, j, k. This proves that the connection
matrix is determined at each leaf reachable by inputs, as was to be shown.? O

We regard the two preczeding theorems as informati?n bounds on L(n) and Lo(n),
respectively. As there are n”" simple n-ary matrices, and 2"" n-ary matrices, of which SR(n)
and R(n) are subsets, respectively, Theorems 1 and 2 could potentially give lower bounds
of the order n’log n or higher. The characterization and enumeration of SR(n) and R(n)
will be the subject of Sections 3 through 5. First we define the Triangular polyhedron 7
and relate it to our present approach.

2.3 THE TRIANGULAR POLYHEDRON T™. A set Z in EV is a polyhedron if Z =
{x|]x € EY, I{(x) = 0,i=1,2,.... m}, where m is an integer, X = (x1, Xz, ..., xn), and
1i(x) = Yr<j=n cyx; — ci for real numbers ¢y, c/. To each subset J C (1,2, ..., m} (possibly
empty), let FA(Z) = {x|l{x) < 0 for each i € J; I(x) = 0 for each i & J}. We call Fx(2)
a face of dimension t of Z if F,(Z) # & and the smallest subspace of E" containing F.(Z)
has dimension 7. Let #(Z) be the set of faces of dimension ¢ of Z for 1 <t =< N. (For more
information on polyhedra, faces, etc., see [7, 12].)

The Triangular polyhedron T is a polyhedron in EY for N = (). Let I1 = ((i, j)|1 <
i<jsn}and Z= (@i, ), k)|(Gj)ETl, 1 =k <nandk ik #j}. Write a vector in E¥
as x = (xy, (i, j) € IT). Then T™ is defined by

T™ = {f|x,~,> =0for(i,j) EM, xy < xp + xy for (i, j, k) € 2},
where® we interpret x to be xs if i > k.

THEOREM 3. |Ulo Z(T™)| < | R(n)}, where N = (3).

COROLLARY. [A(T™)| < |R(n)|.

Proor. It suffices to establish a one-to-one mapping ¢ from U F(T™), i.e., the set
of all faces of 7', into R(n). Write L(X) = x; — xu — x4, for (i, j, k) € . Let F be a face
of T*, specified by a partition of IT into IT, U Il,, = into =, U s, such that

F={x|x;>0if (i, j)) €L, lin < 0if (i, j, k) € S,
and x; = 0 if (i,j) e Il,, lip =10 if(i,j, k) € Z,}.

We now define ¢(F) to be the n X n n-ary matrix M, given by

Ml j1=M[j il = {klG. R EZIU G} if i<)
and

M, i] = {k|{G k), (k, D} N T = @} U {i}.

The mapping @ is one-to-one, as Z; and I, can be reconstructed from @(F).

To complete the proof of the theorem, it remains to show that ¢(F) defines a realizable
matrix M. Choose x = (x;, | =i < j < n) to be any point on F. Define a distance matrix
D = (d;) from x by letting

dij = dji = x; for I=si<j=n,
and
di=0 for I=i=<n
It is easy to check that D ® D = D. It follows that the connection matrix Cpp is given by
Copli, j1 = Cpolj, i] = {k|lju(X) =0, 1 < k = n} U (i, j} if i<y,

* We introduced A4 in the proof for the following reason: The system of constraints £ at a leaf of 4 contains the
2n* “mixed” constraints d; = 0, d; = 0 which are neither equalities nor strict inequalities.
? David Avis pointed out that the conditions x, = 0 are implied by the other conditions in the definition of T""'.
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and '

Copli, 1= {k|lxix=00rxu=0,1 =k =n} U {i}.
This proves that ¢(F) = M = Cpp. The proof of the theorem is complete. [J

3. A Characterization of Simple Connection Matrices

We will give a necessary and sufficient condition for a simple n-ary matrix to be a
connection matrix. We first define some useful concepts.

Definition 4. The weight distribution W(M) of an n-ary matrix M is the integer matrix
defined by W(M);; = |MI[i, jl1|. The sum Y., | M[i, j]| is called the rotal weight of M,
denoted by w(M).

Example 2. Let

with total weight w(M) = 13.

Definition 5. Let M be an n-ary matrix of dimension m X p. For 1 < i =< m, the ith row

signature of M is the vector r') = (r{", r{’, ..., ri?), where r{ is the number of times
integer I appears in the ith row. For 1 < j < p, the jith column signature ¢'? =(c{”, ¢}’

....ci’)y of M is defined in a similar way, i.e., ¢{” is the number of occurrences of / in the

Jjth column. The sequence of m + p vectors 7'V, r®, ... 7™ ¢ ¢® . ¢'?)is then
called the signature of M, denoted by s(M).
In Example 2 above, the row signatures of M are r'"’ = (1, 2, 2), 7® = (2, 1, 0), and

F* = (1, 2. 2); the column signatures are ¢V = (2, 1, 2), ¢® = (2, 1, 1), and ¢® = (0, 3, 1).

Definition 6. An n-ary simple matrix M is said to be s-unigue if no other n-ary simple
matrix M’ can have the same signature as M.

We will show that, for a simple n-ary matrix M, the property of s-uniqueness is the
answer to the question of whether M is realizable as a connection matrix.

THEOREM 4. Let M be an n X n simple n-ary matrix. Then M € SR(n) if and only if M
is s-unigue.

Proor

Necessity. Let M be a simple n-ary matrix such that M = Cpp- for distance matrices
D = (d,) and D’ = (d};). Assume that there exists another simple n-ary matrix M’ % M
with s(M’) = s(M). We will show that this leads to a contradiction.

Write M = (m;) and M’ = (m}). We have

dim, + dnyj S dim,+dp,;  for 1=ij=n, ()

by the definition of the connection matrix Cpp. Furthermore, the inequality (1) is strict if
m, % m,,. Adding up the n® inequalities in (1) we obtain

Z Z d,’,mu + 2 E d:,,'/,_,' < Z Z di,m;/ + 2 Z d:n;!.ja (2)
t J ! i J J i

where the inequality is strict since my; % m|; for some i, j. Now, by the definition of the row
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and column signatures 7, ¢/ of M and 7', & of M’, respectively, (2) is equivalent to
S5 rPda+ N3 edy <35 riPda+ 3 3 il @)
il J 1 il J

But by assumption M and M’ have the same signature, so the left-hand side of (3) is equal
to the right-hand side, which is a contradiction. This proves the necessity of s-uniqueness
for a simple connection matrix.

Sufficiency. We next show that if a simple n-ary matrix M is s-unique, then there exist
distance matrices D and D’ such that M = Cpp. What we look for are D = (dy) and
D’ = (d}) that satisfy the following system of inequalities:

gi.j,a.ﬁ(D’ D,) = (diu + d:!}) - (diﬁ + d;*l) <0
&) for a=my B#a l1=ij=n,
hijau(D, D) = (dia + d_;) — (dia + dij) = 0
for a=my l=<ij=<n
Assume that the system (%) has no solution. We will show that this implies M is not
s-unique. First note that (&) contains at least one strict inequality g; .5 < 0, for n = 2. By

the theorem of Kuhn-Fourier (see [12, Theorem 1.1.9]), (&) isnot solvable only if there
exist nonnegative numbers A; ;.5 such that

Y NjapBisaBt Y AaaMijaa

l=i,j=n 1=ij=n
aﬂ-’:'l ij a“m‘-i
{+

=O-du+ - +0.dj+ s +0:dn) + O0ediy+ o« +0edf+ --0 + 0.d%), (4)

where A; .5 > O for the coefficient of some i.j«.p- We can scale the coefficients in (4) so
that every A is <1/n, except for A, ;... The values of Aijaa (1 =14, j<n, a =my) can be
chosen freely in (4) since A; ;,, = 0, and we shall choose them so that for any fixed 4, j, and
a = my,

Z Ai».i.a.ﬂ = 1. (5)
1=8=n
Let us rewrite (4) as
Y Y Njapldatdi)= T T Ajasldp+ di). (6)
l=i,j<n 1<fB=n 1=i,j<n 1=f=n

By eq. (5), the left-hand side of (6) is
Y (du+d.)),

I=ij=n

a=m;

or, equivalently,

Y X rMdat ¥ ¥ cildy 0]
l=i<n 1si=n l=sj=n l=si=sn
where 7, ¢ are the row and column signatures of M. By comparing the coefficient of
each variable di, d; in (7) with that in the right-hand side of (6), we obtain

Y Aijar=rf" for 1<isn lsi=zn (8)
1=j=n

a=my;

1 Y Njar=c”  for l=j=sn l=sl<n. 9)

a=my;

The equalities in (8) and (9) are best represented in terms of a network flow problem.

Let #(M) be a network with source S, sink T, and, in between, three levels of nodes, with
n® nodes on each level (Figure 2). The nodes on the first level are RY (1 =i, 1= n), on the
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L] L ] ‘:1
{n)
cn
Vn,‘I C:;”
{n)
Von ———> C,

F1G6. 2. Network. 1 (M).

second level V; (1 < i, j < n), and on the third level C}” (1 < j, I < n). Each RY is
connected with the source and the n nodes Vj; (1 < j < n); each C{’ is connected with the
sink and the n nodes ¥j; (1 =i =< n). We shall consider maximum flows in 4 (M), subject
to the following capacity constraints on the nodes (cf. [7]): Node R!” has capacity ", node
CY/" has capacity ¢\, and node ¥; has capacity 1. .

The value of a maximum flow in A(M) is clearly at most ¥; ¥, ri? = ¥, ¥ ¢f” = n?, if
all nodes are saturated to their capacities. We will demonstrate two flow functions y* and
y that can achieve this maximum. Each function assigns the same value to both arcs
(Ri", V) and (¥, C{”). We denote this value by y*(i, j, /) and j(, j, ), respectively.

In the first maximum flow y*, we let

ol = {(l)

There is one unit of flow through every node V,. Furthermore, each node R}, C}’’ is
balanced and saturated by definition of the capacities r{", c}’".
The other flow function 7 makes the assignment

YU D) = Aijan (1
where a = my;. The amount of flow through V; is

2y h=1

1=si=n

if 1= my,

otherwise. (10)
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by eq. (5). The total flow out of node R{” is
Z )7(’»]» 1) = Z Ai.j.tx.l= rl(i)

I=sj<n I<j=n

a=m,,

by eq. (8); similarly the total flow into node C}” is
2 )7([9.1‘9 1) = Z Al',j,n,l = CI‘j)

1=i<n 1=isn

a=m,,

by eq. (9). Therefore y also defines a maximum flow in A{M). Note that y* and y are in
fact two distinct flow functions. This is so because A; .z > 0 for some i, j, « = my;, and
B # a when we formed eq. (4); it then follows from definitions of y* and y in (10) and (11)
that to the particular arc (R{, V;), with ] = B, we have

YLD =0, Fij ) >0. (12)

We are now ready to derive a contradiction that M could not be s-unique. Formulate the
maximum flow problem for A4(M) as a linear program in the standard way
(e.g., [8, Chapter 8]):

maximize z=c-y,
subject to A-y=b, y=0,

with suitable vectors b, ¢, and matrix A4. It is known [8, Theorem 8.8] that in the present
case, when 4 is unimodular and b is an integer vector (representing the capacity constraints
-in #{M)), the bounded polyhedron Y defined by Ay = b, y = 0 has the property that all
of its extreme points have integer components. Let us write y as a convex linear combination
of the extreme points of Y (this is always possible; see [12, Theorem 2.12.2}),

J=Yaryr where axrz=0, Yar=1.

Since y # y*, we must have a; > 0 for some extreme point y; with y, # y*. Denote this y
by y’. Because of (12), we can further assume that y’ is chosen such that

Yy >0 (13)

for the particular triple (4, j, /) in (12). By the theorem quoted above, y’ has integer
components. Furthermore, since z is a concave function of y, that is,

c.y-=c.( 5 y>

a,>0

= ¥ au(c-yn)

a; >0
= max C-yz,
a,>0
the fact that z is maximized at y implies that it must be maximized at all y, with a; > 0. In
summary, we know that (i) y’ is a maximum flow for #{M), distinct from y* and satisfying
(13); (ii) " has integer assignments to all arcs in .4{M)—in fact the assignments are 0-1
valued since the total flow through any V; is 1.

We now define a simple n-ary matrix M’ = (my;) corresponding to y’ by letting mj; = I,
where / is the unique integer with y’(i, j, /) = 1. The fact that all nodes R{” and C/*’ are
saturated under y’ implies that M’ has row and column signatures as given by r/"’ and
¢i’). Note that M’ # M since m{; = [ by (13), while m;; > / by (10) and (12), for some triple
(%, /, 1). But this contradicts the assumption that M is s-unique. We therefore conclude that
the system (#’) can be solved to find D, D’ such that M = Cpp-. The proof of Theorem 4
is thus complete. O
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4. Bounds on the Number of Simple Connection Matrices

On the basis of the characterization derived in the previous section, we shall find bounds
on the number of n X n n-ary simple matrices that are realizable.

THEOREM 5. (C/n)""‘“’4'l2 < |SR(n)| = 42"2,for some constant C > 0.

Proor. We first show the upper bound. By Theorem 4, an n X n n-ary simple matrix
M is in SR(n) only if M has a unique signature among simple matrices. Therefore
| SR(n)| cannot be greater than the total number of such distinct signatures. In a signature
(FO, 72, L P EW, éP, L., é™), each component 7Y = (r{?, r§", ..., r\") can be
viewed as a partition of integer n into n labeled parts. Thus each 7 can take at most
(""" = 4" different values. It follows that the total number of distinct signatures (for
simple matrices) is at most (4")>" = 4% This proves | SR(n)| < 4>

The rest of this section is devoted to the proof of |SR(n)| = (C/n)"/?4™. We define a
class of matrices, called row-ordered matrices, and show that they have the property of
being s-unique. It follows from Theorem 4 that they are all in SR(n). A demonstration that
there are at least (C/n)™?4" such row-ordered matrices then complete the proof.

Definition 7. A simple n-ary matrix is row-ordered if the entries are nondecreasing
along each row. For example, the following matrix is row-ordered:

I 1 2 3
1 3 4 4
2223
1 2 3 3

THEOREM 6. A row-ordered matrix is s-unique.

PrROOF. Let M be a row-ordered matrix, and let (#'), (¢') be its row and column
signatures. We shall show that M is the only simple n-ary matrix whose signatures are
(;(i)) and (E(j)).

Let M be any simple n-ary matrix with signatures (7*) and (¢'”). Clearly M must have
the same dimensions as M. We shall now prove that the signatures determine which entries
of M contain a 1, which entries containa 2, .. ., etc.

Let a be the smallest integer that appears in M. Note that a is uniquely determined by
the signatures. We first show that the positions (4, j) in M where a occurs are determined
by the signatures.

Lemma 1. M[i,j] = {a} if and only if r¥ = j.
Proor. As ("), (¢'") are signatures arising from the row-ordered matrix M, we have
ca’'={i|rd = 1}, (14)
and, in general,

e ={i|rd =} 15)
We can now prove the lemma by induction on j.

J= 1. The only positions (i, 1) in the first column of M where a may appear are those
with r{’ = 1. But, by (14), we must actually place a’s in all such positions in order to satisfy
the requirement of having ¢4’ a’s in the first column.

Induction step.  Suppose the lemma is true for all j < jo. We will prove it for j = jo + 1.
Consider the (jo + l)st column of M. By the induction hypothesis, each row i has had
exactly min{ry’, jo} a’s appearing in column 1 through column jo. Therefore, only those
rows i with ri' = Jo + 1 could have a’s appearing in the (jo + 1)st column. By (15), all such
rows must actually have a’s in the (jo + 1)st column in order to satisfy (15). This completes
the induction step of the lemma. [
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PrOOF OF THEGREM 6 (CONTD.). Now we complete the proof of Theorem 6 by induction
on a, the smallest integer that occurs in M, fora=n,n~1,..., 1. When a = n, M has
integer n in every entry, and this is obviously uniquely determmed from the signature.
Suppose it is true that M = M whenever a = a + 1; we will prove it for a = ao. By the
preceding lemma, the positions in A where ao occurs are only dependent on the sngnature
Therefore M and M have ao at exactly the same positions. Now replace the ao’s in both M
and M by a0 + 1 and call the new matrices M’ and M’ respectlvely Clearly this
transformation still leaves M’ and M’ with the same signature, and M’ is again a row-
ordered matrix. By the induction hypothesis, since the smallest integer in M’ is ao + 1, we
must have M’ = M’. But this implies that, before replacing ao by ao + 1, it must be true
that M = M. This proves Theorem 6. [J

It is easy to see that any matrix which can be transformed into a row-ordered matrix
through row and column permutations is also s-unique.

PROOF OF THEOREM 5 (CONTD.). We now count the number of row-ordered matrices.
As demonstrated earlier, the number of choices of 7@ is (21) = 4(2) = (1/2Vam)4".
(1 + O(1/m) = (C/n)'"*4" for some C > 0. Therefore the number of possible signatures
7, 7, ..., F™) is at least (C/n)"/*4™. Since every such signature can be achieved by
some row- ordered matrix, we have established that there are at least (C/n)"*4™ row-
ordered matrices and hence |SR(n)| = (C/n)"/*4". This completes the proof of Theo-
rem 5. [J

5. Enumeration and Characterization of General Connection Matrices

We extend the preceding results about SR(n) to R(n), the set of all connection matrices. In
Section 5.1 we introduce the notion of “spanning matrices” and discuss their properties.
The results are used in Section 5.2 to derive an upper bound of C** on |R(n)|, which by
Theorem 3 is also an upper bound on the number of edges of the Triangular polyhedron
T'. Finally a characterization of R(n) similar to Theorem 4 is given in Section 5.3.

5.1 SPANNING MATRICES. Let M be any n X n n-ary matrix. Define %y to be the
following induced system of linear equations:

Smh ijaf = (dux‘*'d«,u) (dl‘B"'d;ij):O
for a, BE M3 j), a#p, I=ij=n (16)

As there are only 2n” variables dj and 4}, at most 2n® of these equations can be linearly
independent. Choose any fixed maximal independent subset £ of %, (clearly | £] = 2n?).
We define an n-ary matrix H by

: {f{wlz:f] if (ML) =1, an
Hii, j] alhija.g = 0is in & for some 8} . ..
d{,@lh,-,,-_,,,,,=0is in & for some o} if |MLL ) > L (1%

An n-ary matrix H obtained lhlS way is called a spanning matrix for M. The total weight
of H clearly satisfies w(H) < n* + 2|.%| < 5n°. A basic property of H is the following: For
a pair of distance matrices D and D', if it is known that min{dix + di;|l < k < n} is
achieved by every @ € H[i, j] (for all 1 < i, j < n), then it is also achieved by every a €
M[i, jl. Formally, we have the lemma following Definition 8.

Definition 8. For two n-ary matrices M and M’, we say M’ C M if M'[i, j] € M[i, j} for
all i, j.

LEMMA 2. Ler H be a spanning matrix of an n X n n-ary matrix M. If M’ € R(n) is a
connection matrix and H C M’ then M C M’

Proor. Let M' = Cyj;-. By the assumption that H C M’, we have for any i, j,
do+dj<sdw+dy, |sksn a€H[]) (19)
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This implies hyoesD.DY=0,1<ij=<n, a B € H[i I, a # B. As H is derived from a
maximal independent subset of S in (16), we have

he (D, DY =0, l<ij=<n o BEMjl, a#pB (20)
Formulas (19) and (20) imply that, if | M[i, /1| > 1, then
dio + do < di + d;, l=k=sn, a€ Mlijl

and therefore M[i, j1 € M'[i, jl.
If [ M[i.j1] = 1 then M[i, /1= H[i, jlC M'[i, j]. O

TueorReM 7. Let H and H' be spanning matrices for connection matrices M and M’,
respectively. If H and H' have the same weight distribution and the same signature, then
M=M.

If a connection matrix M is simple, the only spanning matrix for M is itself. In this case
the above theorem becomes a weaker form of the s-uniqueness condition for M in Theorem
4 (weaker because M’ is assumed to be a connection matrix).

Proor. Since H and H' have the same weight distribution, | H[i, j1| = | H'[i, j]| for all
i, j. Let us match the elements of H[i, j] and H'[i, j] in disjoint pairs as Q;; = {(a, B)},
where a € H[i, j]. B € H'[i, j], and | Q;| = | H[i, j1].

Let M = Cpp for D = (dy) and D’ = (d}); we can write down the following set of
inequalities:

Hidiw+dyy<dpg+ds for (o, YEQy, 1=ij=n,
with equality only if B8 & MT{i, j].

When we add up the w(H) inequalities in 2, we obtain

Z z[: r;i)du + Z ; C;ﬁd;jS Z Z r',“’d,-, + Z 2 C’[U)d;j, 21
; 7 T 7 ]

with equality holding only if H' C M, where (r{", ¢{”) and (r}?, ¢/') are the signatures of
H and H'. respectively. Since by assumption H and H’ have the same signature, the two
sides in eq. (21) are equal. Therefore H' € M. By Lemma 2, this implies M' C M.

A similar argument shows M C M’. Hence M = M’. OO

52 A C" BOUND FOR |R(n)|. We will show that there are at most C* connection
. 3 .
matrices (out of the 2" n X n n-ary matrices).

TueoreM 8. | R(n)| < C™° for some constant C.

COROLLARY
| U AT™)|=C".
O=s=(])

Proor. For each M € R(n), choose a spanning matrix Hy. By Theorem 7, all the
weight distribution-signature pairs of Hy, i.e., (W(Hx), s(Ha)), are distinct. Furthermore,
the total weight of Hy satisfies n® = w(Hu) < 5n°. Therefore | R(n)| is bounded by the
product u-v. where u is the number of ways for distributing a total weight 4, n® < 4
< 5n” to the n” entries in the n X n matrix and v is an upper bound on the maximum
number of distinct signatures under any fixed weight distribution (with total weight n* <
A =< 5n%). We will show that u < (64)”2 and v < c¢"" for some constant ¢, which then implies
the theorem.

The number u is bounded by the number of ways of partitioning the integer 5a* into
n® + | labeled parts, where the last part specifies 5n° — 4. Therefore

= (5"':; ”") <29 = (64y".

To estimate v. let bu be the total number of distinct n-tuples of row signatures
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(r™, F®, ..., F) subject to a fixed weight distribution W. It then follows that v <
maxw(bw)?, where we have restricted W to those with total weight n* < 4 < 5n*. For any
such W, let us regard every (r'”, r®, ..., 7" as an n X 'n matrix whose (i, j)th entries are
r{. It follows that bw is bounded by the number of ways of partitioning the integer 4 into

n’ labeled parts. Thus

2
bw < (A M ’) < 2Anio) < o0’
e —

It follows that
y< (26»2)2 - 2!2n2.

This completes the proof of the theorem. The corollary follows immediately from
Theorem 3. [

We have not tried to obtain the best constants C in the above proof. David Avis reported
(private communication) that, by sharpening the above arguments, the constant C in the
Corollary to Theorem 8 can be taken to be 2%

5.3 CHARACTERIZATION OF CONNECTION MATRICES. We will state a necessary and
sufficient condition for an n-ary matrix to be a member of R(xn). The proof is a slight
extension of that given for Theorem 4 and hence will not be repeated.

Definition 9. A multiset U is analogous to a set except that an element may appear
more than once in U. We use | U| to denote the total number of elements appearing in U.
Thus | U} =6 for U= {1, 2,2,2, 3, 3}.

Definition 10.  An n-ary multimatrix M is a matrix where each entry M[/, j] is a multiset
whose elements are drawn from [1, 2, ..., n], with | M{i, j1| < n.

The concepts of weight distribution and signature defined in Section 3 can also be
generalized to an n-ary multimatrix in the obvious way.

Definition 11.  For two n-ary multimatrices M and M’, we say M’ C M if every element
that appears in the multiset M’[i, j] also occurs at least once in M[, j}, for 1 <, j=<n.

We generalize the definition of s-uniqueness to n-ary matrices as follows.

Definition 12.  An n-ary matrix M is said to be s-unigue if for any n-ary multimatrix M’
with the same weight distribution, s(M’) = s(M) implies that M’ C M.

THEOREM 9. Let M be an n X n n-ary matrix. Then M € R(n) if and only if M is s-
unique.

6. Enumeration of the Patterns of Shortest Paths

In this section we examine an information bound based directly on the solution space of
computing shortest distances. Let G be a directed complete graph on n vertices
{v1, v2, ..., v»}, with a nonnegative distance d;; assigned to each edge (v, »,). A path from
vi to v, is a finite sequence of vertices (i = ko, k1, k2, ..., K1, kn = J), not necessarily all
distinct. The length of such a path is 31</<m de,_#, We shall also consider the sequence of
a single point (i) to be a path from i to i, called a null path, with length 0. The entry 4} in
the transitive closure D* is then the minimum length of any path from i to j. For any i, j,
let p;; be the set of all shortest paths in G from v; to v;. (The set p; may be infinite.) We
denote by pattern(D) the n X n matrix (p;) associated with the distance matrix D = (d).
Let P(n) be the collection of all distinct patterns induced by n X n distance matrices. By an
argument similar to that used in Theorem 2, one can show that any linear decision tree for
computing the shortest distance matrix D*, given D, requires at least logs| P(n)] — n’
comparisons in the worst case. This, intuitively, is probably the best information lower
bound one can hope for; the previous approach using connection matrices can be regarded
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as a special case with the vertices divided into three disjoint sets Xy, X3, Xz, such that all
edges except those from X, to X; and from X, to X; are effectively c.

The rest of this section is devoted to proving the following theorem, which states that no
nontrivial lower bound can be obtained even in the present version of the information-
theoretic approach.

THeoREM 10. | P(n)| < C™ for some constant C > 0.

We first generalize the notion of a connection matrix to that for m + 1 consecutive sets
of “cities™ Xo, Xy, ..., X Assuming that D"’ =(d|/") defines the distances between any
pairs of cities in X,y X Xj, then Cpm, ... p=[i, j] is to be the set of best connecting paths
from city i € Xo to city j € X, Formally, if (D', D®, ..., D'™) is a sequence of mn X n
matrices, then their m-connection matrix Cpo, ... pe is defined by

Cpw,.., D4m1[i,j] = {(ay, aa, ..., a,,,_;)l 1< a;=<nforall ],
and dii) +d®,, + ... + d,‘,':’ J
— min @+ A+ AR ),

1ooves m—1

This definition reduces to the connection matrix defined previously when m = 2,
Let R.(n) denote the set of all possible n X n m-connection matrices.

LEMMA 3. |Rn(n)| < |R(n)|™"" for m = 2.

Proor. We will show that, for m > 2, Cpm__ pw is determined by Cpw, ... pm-n and
Capm, where A = DV Q@ D® Q@ ... @ D" This will imply that | Ru(n)| < | Rm-1(n)]-
| R2(n)|. The lemma then follows by induction, observmg that |R2(n)| = |R(n)|

Let 4 = D" ® D? ® . ® D™V Since ming, ...k, (df + -+ +di¥ ;) =
ming,_(ming,, .. 5, _(d% + -+ R+ dim ), an alternative descrlptlon of
Cpw, . pe[i, _/] is the set of (al, vy Om—2, Qm_1) "such that am-1 € Cap=l[i, j], and
(a1, ..., am-2) € Cpw,... pm-n[i, an-1]. This proves that Cpu, . pm is determined by
Cum Dim-1 and CA'Dlm». D

Proor oF THEOREM 10. We shall derive a recurrence relation on | P(n)|. We use the
idea employed in {1] for reducing the shortest paths problem to {min, +} multiplication.
Let X be any 2n X 2n distance matrix on vertices {1, 2, ..., 2n}. We write it in the form of

four n X n blocks
_ (A B
x-(42) o)

The shortest distances matrix X* then satisfies the following recurrence formula
[1. p. 204]:

X,,:( E* E*® B® D* ) 23)

D*QYXE* D*®(D*QY®E*QBQ D*))

where £ = (4 @ (B ® D* @ Y)). Actually, implicit in the derivation of (23) is an
enumeration of all possible shortest paths between any two of the 2n vertices in terms of
quantities involving only 7 X n matrices. We now make this statement precise in a lemma.

Definition 13. Let & and &’ be the n X n matrices of 0’s and +1’s defined below:

-1 <
&5 = { 0} if (A)y {=} (BO®D*QY),
1 >

-1 <
&y = { O} if (D*)y {=} (D*Q YQ® EQ BQ D*),.
1 >
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Define the counting vector p(X), for X as in (26), to be u(X) = (pattern(D), pattern(E),
Cg 80 Cp* v+, Co v 80, Coapey, 6, &)

LEmMMa 4. The matrix pattern(X) is determined by the counting vector p(X).

Proor. We shall show that the (/, j)th entry of pattern(X) is determined by u(X) for all
i, j.

First we assume | =</, j = n. Following the original argument [1, p. 204] leading to (23),
any path from vertex i to vertex j can be written uniquely as

(i = ko, 01, k1, 02, ko, ..., kiy, 04, Kty <oy Oy K =j)’

where each k; € {1, 2, ..., n} and each o, is a sequence of vertices (possibly empty) in
{n+1,n+2,...,2n} (mmay be 0 when i = j). A shortest path from i to j is characterized
by the following conditions:

(a) Each k- 01k is among the shortest such paths from k.1 to k;; denote this length by
leng(k:-1, k).

(b) The k’s satisfy the condition that Y, leng(k:-1, k;) is minimum for all possible choices
of the k’s.

We can restate the conditions as follows. Let

Q = pattern(E),
Ao = Ui mecy - s [ partern(D)]nn,

and let T" be the n X n matrix defined by

{A} if &u=-—1,
Fsl = Asl lf gs' = l,
{}\) U Asl if é”s, = 0,

where we use A for the null sequence. Then condition (b) is equivalent to (ko, k1, . . ., k)
€ @y and condition (a) is equivalent to or €', s, for | <! = m. But this implies that the
(i, j)th entry of pattern(X), i.e., the set of all shortest paths from 7 to j, is determined by Q
and I' and hence by pattern(E), pattern(D), Cg.p+y, and &. This proves the lemma for the
case l =i j=n.

Similarly, one can show that the set of shortest paths from i to j is determined by
pattern(E), Cpp-v, &, and, in addition,

Ce- n.p- and pattern(D) if l=<i<sn, n+1=<j<2n,
Cp-.v.e+ and pattern (D) if n+1=<i=<2n, Il=j=n,
Cp-.y.E-puD*, pattern (D), and & if n+l1=ij=<2n

We omit the details, [J

PrOOF OF THEOREM 10 (CONTD.). To complete the proof of Theorem 10, we note that,
by Lemma 4, the number of distinct patterns is bounded by the number of distinct counting
vectors. This leads to

[ PQ@n)| < | P(n)]P-| R 2| R) [2-| R | -] R(n) |2-3*"°

by Definition 13 and Lemma 3.
Writing f(n) for | P(n)| and using Theorem 8, we obtain

f@n) = (f(n))*)C™  for some constant C.
Taking logarithms,
Inf(2n) =2 In f(n) + n’ln C.
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For n = 2" this leads to (noting that f(1) = 2)*

2 2 2
In f(2n) < (In C) <n2 +2 <§) +22 (-2'12) e 42 (%) + 2"”lnf(l)>
< 4n%n C.

This proves f(n) = C"* if n is a power of 2.

For general n one can easily show f(n) < f(2'°*"") by adding extra points with effec-
tively o distances between these points and the other vertices. This leads to f(n) < c
immediately. The proof of Theorem 10 is thus complete. [

7. Other Applications of s-Uniqueness

The s-uniqueness characterization technique used in this paper might be useful in the
study of other complexity problems. As an example we consider below a particular sorting-
type problem.

Let X = {xi, x2, ..., X»} be a linearly ordered set of n distinct elements, and let S,
S2, ..., Sm be specified subsets of X. Consider the problem of computing the minimum
element of each S; by pairwise comparisons between the elements. For m = 2 this can be
done in n — 1 comparisons by first computing 1, y, y3 (the minimum elements in S, N Se,
Sy N S S N S, respectively), followed by the computation of min{y, y»} and
min{ y2, ys}. This scheme can be extended to solve the problem, for any fixed m, in n +
O(1) comparisons. However, for arbitrary m and n, the problem does not seem to be
solvable in linear time, i.e., using O(m + n) comparisons. It is thus of interest to study the
quantity 7(S1, Sz, ..., Sm) = loga(# of possible answers), which is the information-theoretic
lower bound in the decision tree model. We shall now demonstrate that I(S, S, ..., Sn)
= m + n, ie., the information bound is weak for this problem. In the following, the
definitions for the terms “realizable,” “signatures,” and “s-uniqueness” are for this problem
only and are different from their usage in earlier sections.

Definition 14. Let L = (x;,, x;,, ..., x;,) be a list of representatives, i.e.,x; € S; for 1 =
i < m. We call this list realizable provided that there exist a linear ordering of X relative to
which x;, = min{x;|x; € S;} for 1 =i=m.

Let & denote the set of all realizable lists of representatives. (& depends on S,
So, ..., Sn.) Obviously I(S1, S, ..., Sm) = logs} #]. We shall prove that | | < 2"*". This

immediately implies I(S1, So, ..., Sm) = m + n, as was to be shown.
Definition 15. Let L = (x;, X;,, ..., X;, ) be a list of representatives and let r, 1 = k
< n, denote the number of i such that j; = k. We refer to the vector (ry, r2, ..., a) as the

signature of L. The list L is s-unique if no other list L’ has the same signature as L.
THEOREM 11. A list of representatives L. = (x;, X;,, ..., X;,) is realizable iff it is s-unique.
COROLLARY. |¥] =< 2™
ProOF

Necessity. Let L' = (x;, x;,, ..., x;,) be another list of representatives having the same
signature as L, and assume that X is ordered so as to realize L. Then the mapping j; — ji
induces an automorphism with the multiset {x;, x;, ...,x, } which is nondecreasing, and
strictly increasing at least once—an impossibility.

Sufficiency. Suppose that L is not realizable. Construct the directed graph G whose
vertex set is X and which includes precisely the edges(x;, xx) such that x, € S; and k #
Ji- The fact that L is not realizable implies that G contains a directed cycle, say,

Cery Xty oo os (Xty_ys X2, (X1, X1).

* When n = I. pattern(D) = (pn). where puy = {(1)) if dyy > 0 and piy = {(1). (1, . (1, 1, D, (I, 1L L 1), L) if
du=0.
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By definition of G, there exist distinct hy, ks, ..., hg such thatx,, x;,,, € Sy, (1 S u < g),
Xt,, X1, € Sx,, and x,, is the representative chosen from Sy, for 1 < u < d. However, fron
the sets S, we can pick instead the representatives x;,,, if u < d, x; if u = d. Picking the
same representatives from the remaining Sk as before, we obtain a different list of
representatives with the same signature. Thus L is not s-unique.

COROLLARY.  As the number of distinct signatures is at most ("™"7!) < 2*", the corollary
Jfollows. O
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