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On Solutions for the Maximum Revenue Multi-item Auction

under Dominant-Strategy and Bayesian Implementations

Andrew Chi-Chih Yao∗

Abstract

Very few exact solutions are known for the monopolist’s k-item n-buyer maximum revenue prob-
lem with additive valuation in which k, n > 1 and the buyers i have independent private distributions
F j
i on items j. In this paper we derive exact formulas for the maximum revenue when k = 2 and

F j
i are any IID distributions on support of size 2, for both the dominant-strategy (DIC) and the

Bayesian (BIC) implementations. The formulas lead to the simple characterization that, the two
implementations have identical maximum revenue if and only if selling-separately is optimal for the
distribution. Our results also give the first demonstration, in this setting, of revenue gaps between
the two implementations. For instance, if k = n = 2 and Pr{XF = 1} = Pr{XF = 2} = 1

2
, then the

maximum revenue in the Bayesian implementation exceeds that in the dominant-strategy by exactly
2%; the same gap exists for the continuous uniform distribution XF over [a, a+ 1] ∪ [2a, 2a+ 1] for
all large a.

∗Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing. This work was supported in part
by the Danish National Research Foundation and the National Natural Science Foundation of China (under grant NSFC
61361136003).
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1 Introduction

A monopolist wants to sell k items to n buyers with the aim to maximize revenue, where buyers i have
private (additive1) valuations tji of items j described by independent distributions F j

i over the range
[0,∞). How should the optimal mechanisms be designed?

Myersons’s classical paper [34] elegantly and completely solved the problem for the single item
(k = 1) setting. For multiple items (k > 1), the problem is much more complex with an extensive
literature (see Related Work below). Much progress has been made, but many interesting questions
remain open.

In this paper we focus on two such questions, both arising in connection with certain features
of Myersons’s solution. Note that for k = 1 Myerson’s theory in many situations leads to explicit
formulas for the optimal revenue, in addition to good intuitive understanding of how optimality arises.
For k > 1, in the single buyer (n = 1) case, there is a rich collection of sophisticated results (e.g.,
Manelli and Vincent [29], Hart and Nisan [23], Hart and Reny [25], Pavlov [35], Wang and Tang
[40], Giannakopoulos and Koutsoupias [21][22], Giannakopoulos [19][20]), where explicit expressions
for optimal revenue are obtained for certain discrete and continuous distributions. However, for k > 1
and n > 1, there do not seem to be any interesting results of this kind in the literature.

Question Q1. For k > 1 and n > 1, can we obtain explicit expressions of the optimal revenue for
interesting families of distributions?

We turn to a second question. In auction theory, and more generally mechanism design theory,
there are two standard versions of how the players’ behavior is modeled, which translate into constraints
on the classes of allowable mechanisms known respectively as dominant-strategy incentive-compatible
(DIC) and Bayesian incentive-compatible (BIC) mechanisms. Formally, the BIC constraints look much
weaker than the DIC constraints. It is thus a remarkable feature of Myersons’s theory for the single-
item auctions that exactly the same maximum revenue is achieved by the BIC mechanisms and the
DIC mechanisms. Can this equivalence hold for k > 1?

Question Q2. For k > 1, can Bayesian incentive-compatible (BIC) mechanisms ever produce strictly
more revenue than the dominant-strategy incentive-compatible (DIC) mechanisms?

There is a substantial literature on the DIC versus BIC question (see Related Work below). When
the independence condition on the distributions F j

i is dropped, then the answer to Question 2 is known.

Cremer and Mclean [15] showed BIC can generate unbounded more revenue than DIC, when F j
i are

correlated across buyers even for k = 1. Recently, Tang and Wang [39] showed in some instance with
k > 1, BIC can generate strictly more revenue than DIC, when F j

i are correlated across items. There
are other examples (e.g. Gershkov et al. [18]) where DIC and BIC are shown to be inequivalent in
revenue (and other attributes), but their models are farther away from our model under consideration
here.

In this paper we address questions Q1 and Q2. As a contribution in the direction of Q1, we derive
exact formulas for the maximum revenue for both DIC and BIC implementations for k = 2 and any
n > 1, where the 2n distributions F j

i are IID with a common F of support size 2. As a by-product, these
formulas give an answer to Q2, showing the BIC optimal revenue expression to be strictly greater than
that of DIC for a broad range of parameters. In fact the formulas lead to the simple characterization
that, the two implementations have identical maximum revenue if and only if selling-separately is

1Namely, for each buyer i, the valuation of a set S of items is
∑

j∈S
t
j
i , the sum of valuations for all the items in S.
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optimal for the distribution. For instance, if k = n = 2 and Pr{XF = 1} = Pr{XF = 2} = 1
2 , then the

maximum revenue in the Bayesian implementation exceeds that in the dominant-strategy by exactly
2%. A natural extension to the continuous case shows that the same 2% gap holds for the uniform
distribution over [a, a+1]∪ [2a, 2a+1] as a→∞. We also remark that our result complements nicely a
result in Yao [41] where the BIC maximum revenue is shown to be always upper bounded by a constant
factor of the DIC maximum revenue.

Related Work

Much progress has been made on the computational aspects of multi-item auctions in models like the
one discussed here. The intrinsic complexity of computing the optimal revenue has been investigated
(e.g. [14][16]; efficient algorithms have been found in a variety of circumstances (e.g. [7][8][17]);
furthermore, simple approximation mechanisms have been extensively studied in various environments
(e.g. [1-3][6][9-13][23-28][37-39][41]).

The DIC versus BIC question falls in the domain of Implementation Theory, which is a central
subject in mechanism design with a large literature (see e.g.[31-33][36]). Most related to our work,
beyond references mentioned in previous paragraphs, are Manelli and Vincent [30], Gershkov et al.
[18], which present equivalence results of DIC and BIC beyond revenue equivalence for models with
one-dimensional types, and discuss the limitations of such equivalence results.

2 Preliminaries

2.1 Basic Concepts

Let F be a multi-dimensional distribution on [0,∞)nk. Consider the k-item n-buyer auction problem
where the valuation n× k matrix t = (tji ) is drawn from F . Each buyer i has ti ≡ (t1i , t

2
i , · · · , t

k
i ) as his

valuations of the k items. We also refer to ti as buyer i’s type, and t as the type profile of the buyers
(or profile for short). For convenience, let t−i denote the valuations of all buyers except buyer i; that
is, t−i = (ti′ | i

′ 6= i). Note that tj, the j-th column of the matrix t, contains the valuations of all the
buyers on item j.

Amechanism M specifies an allocation q(t) = (qji (t)) ∈ [0,∞)nk, where qji (t) denotes the probability

that item j is allocated to buyer i when t = (tji ) is reported as the type profile to M by the buyers.

We require that
∑n

i=1 q
j
i (t) ≤ 1 for all j, so that the total probability of allocating item j is at most 1.

M also specifies a payment si(t) ∈ (−∞,∞) for buyer i.

The utility ui(t) for buyer i is defined to be ti · qi(t) − si(t), where ti · qi(t) stands for the inner
product

∑k
j=1 t

j
iq

j
i (t). Let ui(ti ← t′i, t−i) = ti · qi(t

′
i, t−i) − si(t

′
i, t−i), i.e. the utility buyer i would

obtain if he has type ti but reports to the seller as t′i. The expected utility ūi(ti) for buyer i is defined
to be Et−i

(u(ti, t−i)). Also let ūi(ti ← t′i) = Et−i
(ūi(ti ← t′i, t−i)).

The following formulas are well known:

Transfer Equations: ui(ti ← t′i, t−i) = ui(t
′
i, t−i) + (ti − t′i) · qi(t

′
i, t−i) for all ti, t

′
i, t−i.

Transfer Equations (Averaged form): ūi(ti ← t′i) = ūi(t
′
i) + (ti − t′i) · q̄i(t

′
i) for all ti, t

′
i.

Two kinds of mechanisms have been widely studied, referred to as Dominant-strategy and Bayesian
implementations as specified below.
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A. Dominant-strategy Implementation

IR conditions: ui(t) ≥ 0 for all i and t.

DIC conditions: ui(ti, t−i) ≥ ui(ti ← t′i, t−i) for all ti, t
′
i and t−i, or equivalently,

DIC conditions (Alternate): ui(ti, t−i)− ui(t
′
i, t−i) ≥ (ti − t′i) · qi(t

′
i, t−i) for all ti, t

′
i and t−i.

A mechanism is called individually rational (IR)/dominant-strategy incentive compatible (DIC), if
it satisfies the IR conditions/the DIC conditions, respectively.

B. Bayesian Implementation

BIR conditions: ūi(ti) ≥ 0 for all i and ti.

BIC conditions: ūi(ti) ≥ ūi(ti ← t′i) for all ti, t
′
i, or equivalently,

BIC conditions (Alternate): ūi(ti)− ūi(t
′
i) ≥ (ti − t′i) · q̄i(t

′
i) for all ti, t

′
i.

A mechanism is called Bayesian individually rational (BIR)/Bayesian incentive compatible (BIC),
if it satisfies the BIR conditions/the BIC conditions, respectively.

Let s(x) =
∑n

i=1 si(x) be the total payments received by the seller. For any mechanism M on F ,
let M(F) = Ex∼F (s(x)) be the (expected) revenue received by the seller from all buyers. The optimal
revenue is defined as REVD(F) = supM M(F) when M ranges over all the IR-DIC mechanisms.
Similarly, in the Bayesian model, the optimal revenue is defined as REVB(F) = supM M(F) where M
ranges over all the BIR-BIC mechanisms. As a benchmark for comparison, let SREV (F) stand for the
revenue yielded when each item is sold separately by using Myerson’s optimal mechanism [34].

Hierarchy Mechanism

Consider an n-buyer 1-item auction. A hierarchy allocation scheme H is specified by a mapping
Rank : T →R∪ {∞}. Given a type t ∈ (t1, t2, . . . , tn), scheme H allocates the item uniformly among
the set of buyers i with the smallest ranking. If Rank(ti) =∞ for all i, then no allocation will be made
to any buyer. For convenience, we also use the notationH = [τ11, . . . , τ1a1 ; τ21, . . . , τ2a2 ; . . . ; τℓ1, . . . , τℓaℓ ]
with the understanding Rank(τdm) = d for all 1 ≤ d ≤ ℓ, 1 ≤ m ≤ ad, and Rank(t) =∞ for any type
t not listed among τdm.

In an n-buyer k-item auction, a hierarchy mechanism M uses an allocation function specified by a
k-tuple H = (H1,H2, · · · ,Hk), where each Hj is a hierarchy allocation scheme to be used for item j;
also a utility function ui(t) for each buyer i needs to be specified for M . Note that the payment for
buyer i is determined by si(t) =

∑

j q
j
i (t)t

j
i − ui(t).

The concept of hierarchy mechanism was raised in Border [4][5] for one item, and later for multi-
items in Cai et al.[7] in connection with Border’s Theorem and efficiently computing optimal auctions.
Here we only need the concept as a convenient way to describe some of our proposed mechanisms.
More in-depth discussions of hierarchy mechanisms can be found in [4][5][7].

3 Main Results

In this paper, we solve for REVB(F) and REVB(F) in the n-buyer, 2-item case when F consists of
2n IID’s of a common F with support size 2. Any such F can be specified by a 4-tuple δ = (n, p, a, b)

4



where n ≥ 2 is an integer, 0 < p < 1, and 0 ≤ a < b. Let Fδ denote the valuation distribution for the
n-buyer 2-item auction, where the distributions F j

i for buyer i and item j are independent and identical
(IID) copies of random variables X defined by Pr{X = a} = p and Pr{X = b} = 1 − p. Assuming
additive valuation on items for each buyer, we are interested in determining REVD(Fδ) and REVB(Fδ),
the maximum revenue achievable under IR-DIC and BIR-BIC, respectively, for distribution Fδ. We
find two benchmarks relevant, SREV (Fδ) and sb = 2(1 − pn)b: the former is the revenue obtained
by selling separately each item using Myerson’s optimal mechanism [34]; the latter is the revenue by
selling separately each item at price b.

Fact 1. SREV (Fδ) = 2 ·max{(1 − pn)b, pn−1a+ (1− pn−1)b}.

3.1 The Main Theorem

For any real-valued function G, we use G+ to denote the nonnegative function defined as G+ =
max{G, 0}.

Definition 1. Let p0 = p2n, p1 = 2np2n−1(1− p), and p2 = 2pn
(

1− pn − npn−1(1− p)
)

. Define

rD(δ) = 2(1− pn)b + p0

[

2a−
1− p2

p2
(b− a)

]

+

+ p1

[

a−
1− p

2p
(b− a)

]

+

+ p2

[

a−
1− p

p
(b− a)

]

+

rB(δ) = 2(1− pn)b+ p0

[

2a−
1− p2

p2
(b− a)

]

+

+ (p1 + p2)
[

a−
1− p

2p
(b− a)

]

+

Main Theorem. REVB(Fδ) = rB(δ) and REVD(Fδ) = rD(δ).

Corollary 1.
(a) REVB(Fδ) = REVD(Fδ) = SREV (Fδ) if b ≥ 1+p

1−p
a,

REVB(Fδ) > REVD(Fδ) > SREV (Fδ) otherwise.
(b) REVD(Fδ) = REVB(Fδ) if and only if Selling-Separately is optimal.

Remark 1. For fixed n, p, a, the functions rB(δ), rD(δ) and SREV (Fδ) are each continuous, piecewise-

linear functions in b as shown in Figure 1. Breakpoints of linearity occur at v1 =
1+p2

1−p2
a, v2 =

1
1−p

a, and

v3 =
1+p
1−p

a along the b-axis. The two additive terms of rB(δ) are 0 iff b ≥ v1, and b ≥ v3, respectively.
Similarly, the three additive terms of rD(δ) are 0 iff b ≥ v1, b ≥ v3, and b ≥ v2, respectively.

Remark 2. The formula for rD(δ) can be interpreted as follows (and likewise for rB(δ)). The first term
2(1−pn)b is equal to sb. The three additive terms represent the extra revenue, beyond selling-separately
at b, that can be gleaned from three specific subsets of profiles. (These subsets are defined as S0, S1,
S2 in Definition 5 later, with non-zero probability of occurrence p0, p1, p2, respectively.)
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Figure 1: REVB , REVD, and SREV as functions of b

Corollary 1 can be derived as follows. When b ≥ v3 = 1+p
1−p

a, all terms in square brackets in
Definition 1 are 0, hence rD(δ) = rB(δ) = 2(1 − pn)b = sb. As by definition sb ≤ SREV (Fδ) ≤ rD(δ),
we conclude rD(δ) = rB(δ) = SREV (Fδ) in this case. When b < v3, we have a − 1−p

2p (b − a) > 0,
implying

rB(δ) − rD(δ) = p2

([

a−
1− p

2p
(b− a)

]

+
−

[

a−
1− p

p
(b− a)

]

+

)

> 0.

To compare rD(δ) with SREV (Fδ) when b < v3, notice that the two continuous piecewise-linear
functions are equal when b = a and b = v3. It is easy to check from their formulas that, rD(δ)
strictly dominates SREV (Fδ) at both breakpoints v1 and v2 interior to [a, v3]. We conclude that
rD(δ) > SREV (Fδ) over the entire interval (a, v3). Corollary 1(a) follows. Corollary 1(b) follows
immediately from 1(a).

Example 1. As an illustration, consider the case δ = (n, p, a, b) with n = 2, p = 1
2 , a = 1, b = 2. The

formulas in the Main Theorem tell usREVD(Fδ) =
1
8(3+11b) for b ∈ [2, 3), andREVB(Fδ) =

1
16 (9+21b)

for b ∈ [53 , 3). Thus for b = 2 we have REVD(Fδ) = 25/8 = 3.125 and REVB(Fδ) = 51/16 = 3.1875,
with a gap of 2%. Note that grand bundling yields only revenue 45/16, while selling separately yields
revenue 3, both strictly less than 3.125.

3.2 Application to Continuous Distributions

The results in the Main Theorem have implications on the maximum revenue for continuous dis-
tributions if the latter can be well approximated by Fδ. As an application, let λ > 1, a > 1

λ−1 ,

and let F = (F j
i | 1 ≤ i ≤ n, 1 ≤ j ≤ 2) be a distribution where F j

i = F are IID distributions with
support(XF ) = [a, a+1]∪[λa, λa+1]; let p = Pr{XF ≤ a+1}. We can regard Fδ, where δ = (n, p, 1, λ),
as a normalized discrete approximation of F .

6



Corollary 2. Let δ = (n, p, 1, λ). There exists a constant Cδ such that

|REVZ(F)− rZ(δ) · a| < Cδ for Z ∈ {D,B}.

Corollary 2 is proved by an extension of our proof of the Main Theorem to the continuous setting
(details omitted here).

Remark 3. There are general high-precision approximation theorems in the literature (e.g. see[9][17][27][38])
connecting continuous and discrete distributions for the BIC maximum revenue auction. Our derivation
of Corollary 2 does not rely on such general theorems.

We consider an illustrative example of Corollary 2 where n = 2. Let Ga = (F j
i | i, j ∈ {1, 2}), where

F j
i = F are IID distributions with XF uniformly distributed over [a, a + 1] ∪ [2a, 2a + 1]. According

to Corollary 2, we have
1

a
lim
a→∞

REVZ(Ga) = rZ(δ) for Z ∈ {D,B} where δ = (2, 12 , 1, 2). More precise

bounds for this example are given below. Note that from Definition 1, one has rD(δ) = 25
8 and

rB(δ) =
51
16 , with a 2% difference.

Corollary 3. For a ≥ 20, the BIC maximum revenue for Ga strictly exceeds its DIC maximum revenue.
In fact, we have for a ≥ 6,

25

8
a ≤ REVD(Ga) <

25

8
a+

5

4
51

16
a ≤ REVB(Ga) <

51

16
a+

3

2
.

3.3 Optimal Mechanisms

The optimal revenue rD(δ) and rB(δ) stated in the Main Theorem can be realized, respectively, by
the IR-DIC mechanism MD,δ and the IR-BIC mechanism MB,δ defined below. First, we name the
characteristic functions for the three intervals where the individual terms of rD(δ), rB(δ) are non-zero.

Definition 2. Define










αp,a,b = 1 if b < v1, and 0 otherwise.

βp,a,b = 1 if b < v3, and 0 otherwise.

γp,a,b = 1 if b < v2, and 0 otherwise.

The subscripts in αp,a,b, γp,a,b, βp,a,b can be dropped when p, a, b are clear from the context. Note
that, if desired, the formulas for rD(δ) and rB(δ) can be written using α, β, γ as multipliers in place of
the notation G+ ≡ max{G, 0}.

Definition 3. In what follows, the term profile refers to a profile in the support of Fδ , a type refers to
a type in {a, b} × {a, b}. For any profile t and j ∈ {1, 2}, we say tj is cheap if tji = a for all 1 ≤ i ≤ n
(we also say item j is cheap); otherwise tj is non-cheap. Call a profile t 1-cheap if t has exactly 1 cheap
item. We use I(t) to denote the subset of buyers i with ti 6= (a, a), that is, only excluding those who
value both items at a. Note that, if t is 1-cheap, then |I(t)| is equal to the number of b’s in t (and all
appearing in the same column).

We now define mechanism MD,δ and MB,δ below, in the form of hierarchy mechanisms. First divide
the range (a,∞) of b into 4 subintervals: I1 = (a, v1), I2 = [v1, v2), I3 = [v2, v3) and I4 = [v3,∞).

7



Mechanism MD,δ:

Case 1. b ∈ I1. Use the allocation function (H1,H2) where H1 = [(b, b); (b, a); (a, b); (a, a)] and
H2 = [(b, b); (a, b); (b, a); (a, a)].

Case 2. b ∈ I2. Use the allocation function (H1,H2) where H1 = [(b, b); (b, a); (a, b)] and H2 =
[(b, b); (a, b); (b, a)].

Case 3. b ∈ I3. If t = (ti, t−i) with t−i being the lowest profile (a, a)n−1, then offer items 1 and
2 to buyer i as a bundle at price a + b. Otherwise, use the allocation function (H1,H2) where
H1 = [(b, b); (b, a)], H2 = [(b, b); (a, b)].

Case 4. b ∈ I4. Use the allocation function (H1,H2) where H1 = [(b, b); (b, a)], H2 = [(b, b); (a, b)].

The payment of M(Fδ) is determined by the following utility function: for 1 ≤ i ≤ n, t = (ti, t−i),

ui(ti, t−i) =























(b− a)α
n

if ti = (b, a) or (a, b), and t−i = (a, a)n−1

(b− a)(α
n
+ β) if ti = (b, b), and t−i = (a, a)n−1

(b− a) γ
1+|I(t−i)|

if ti = (b, b), t−i is 1-cheap

0 otherwise.

(1)

Remark 4. Strictly speaking, MD,δ in Case 3 is not a hierarchy mechanism. We abuse the term slightly
for convenience. We observe that when b ∈ I4, MD,δ can be described as selling each item separately
at price b with a particular tie-breaking rule as dictated by the Case 4 allocation function (H1,H2).
When b ∈ I3, MD,δ can be described as follows: if t = (ti, t−i) with t−i = (a, a)n−1, then offer items
1 and 2 to buyer i as a bundle at price a + b; otherwise sell each item separately at price b with a
particular tie-breaking rule as dictated by the Case 3 allocation function (H1,H2).

Mechanism MB,δ :

Case 1. b ∈ I1: Use the allocation function as defined in Case 1 of MD,δ.

Case 2. b ∈ I2 ∪ I3: Use the allocation function as defined in Case 2 of MD,δ.

Case 3. b ∈ I4: Define MB,δ = MD,δ.

In both Case 1 and 2, the payment is defined by the same utility function ui(ti, t−i) as in MD,δ with
only one exception: if ti = (b, b) and t−i is 1-cheap, then let

ui(ti, t−i) =
1

2
(b− a)

β

1 + |I(t−i)|
.

Remark 5. In fact, MB,δ(Fδ) is an IR-BIC mechanisms (not just BIR-BIC), as will be shown later.

Question. What is the difference between the allocation of MD,δ and MB,δ, and how does MB,δ

manage to outperform MD,δ? We can gain some insights by looking at an example.

Consider Example 1 introduced previously, with δ = (n, p, a, b) where n = 2, p = 1/2, a = 1 and
b = 2. This δ falls under Case 3 of mechanism MD,δ (and Case 2 of MB,δ, respectively). The two

8



mechanisms are different only in the way they handle the following two sets of profiles:
(A) Assume t1 = t2 = (1, b) or t1 = t2 = (b, 1). Here MB,δ offers each buyer 50% of both items as a
bundle at price 1

2(1 + b), while MD,δ offers each buyer 50% of item 2 at price b
2 ;

(B) Assume i has type (b, b) and the other buyer has type (1, b) or (b, 1). Here MB,δ offers buyer i both
items as a bundle at price 2b− 1

4 (b− 1), while MD,δ offers buyer i both items as a bundle at price 2b.

Mechanism MB,δ gets more payment than MD,δ in situation A and gets less in situation B, but
gains an overall improvement of 1

16 over MB,δ. It is key to observe that mechanism MB,δ violates the
DIC constraint u1((b, b), (1, b)) ≥ u1((1, b), (1, b)) + (b− 1)q11((1, b), (1, b)).

4 DIC Maximum Revenue

In this section we give a proof outline of the Main Theorem for the dominant strategy implementation:

Theorem 1. Any IR-DIC mechanisms M must satisfy M(Fδ) ≤ rD(δ).

Theorem 2. MD,δ is IR-DIC, and MD,δ(Fδ) = rD(δ).

We begin with a general discussion applicable to any mechanism. Let M be a mechanism with
allocation qji and utility ui. We separate out the allocation of cheap items from non-cheap items.

Thus, define q′ji (t) = qji (t)η
j(t) where ηj(t) = 1 if item j is cheap, and ηj(t) = 0 if j is non-cheap.

Note that the welfare of the buyers from the allocation of cheap items is a ·
∑

i,j,t Pr{t}q′ji (t), while

the welfare from the non-cheap items is
∑

i,j,t Pr{t}(1− ηj(t))qji (t)t
j
i which is at most 2(1− pn)b (the

revenue obtained by selling-separately at price b). The well-known connection between revenue, welfare
and utility leads to the following formula.

Basic Formula. For any mechanism M , we have

M(Fδ) ≤ 2(1− pn)b+Qa− U,

where Q =
∑

i,j,t Pr{t}q′ji (t) and U =
∑

i,t Pr{t}ui(t).

Definition 4. For any set S of profiles, letQ(S) =
∑

t∈S Pr{t}
∑

i,j q
′j
i (t), and U(S) =

∑

t∈S Pr{t}
∑

i ui(t).

To make use of the Basic Formula, we partition the profiles that can possibly contribute to the
Q term into three subsets S0, S1, S2, and then use the IR-DIC Conditions to show that the U term
(utility obtained by buyers) is greater than a certain linear combination of Q(S0), Q(S1), Q(S2). The
Basic Formula then yields rD(δ) as an upper bound to M(Fδ).

Definition 5. Let S0 = {(a, a)n} be the set containing a single element, namely, the lowest profile.
Let S1 be the set of 1-cheap profiles t satisfying |I(t)| = 1. Let S2 be the set of 1-cheap profiles t
satisfying |I(t)| ≥ 2.

Fact 2. q′ji (t) = 0 for all t 6∈ S0 ∪ S1 ∪ S2.

Recall that p0 = p2n, p1 = 2np2n−1(1−p), p2 = 2pn(1−pn−npn−1(1−p)). They have the following
interpretation as can be easily verified.

Fact 3. Pr{t ∈ Sℓ} = pℓ for ℓ ∈ {0, 1, 2}, where t is distributed according to Fδ.

Lemma 1.
Q(S0) ≤ 2p0, Q(S1) ≤ p1, Q(S2) ≤ p2. (2)

9



Proof. Any profile in S1 or S2 has exactly one cheap item, and the (only) profile in S0 has two cheap
items. Lemma 1 then follows from Fact 3.

Lemma 2.

M(Fδ) ≤ 2b(1 − pn) + a
∑

0≤ℓ≤2

Q(Sℓ)− U. (3)

Proof. It follows from Fact 2 that Q = Q(S0) +Q(S1) +Q(S2). Lemma 2 then follows from the Basic
Formula.

Lemma 1, 2 set the stage. We are ready to invoke the incentive compatibility requirements to prove
Theorem 1. This setting is also useful in the next section when we prove the BIC part of the Main
Theorem.

4.1 Upper Bound to DIC Revenue

We prove Theorem 1 in this subsection. The key is to prove the following proposition.

Proposition 1. Any IR-DIC mechanism M must satisfy the following inequality:

U ≥ (b− a)
(1− p2

2p2
Q(S0) +

1− p

2p
Q(S1) +

1− p

p
Q(S2)

)

. (4)

We first show that Theorem 1 follows from Proposition 1. It follows from Lemma 2 and Proposition
1 that, for any IR-DIC mechanism M , we have

M(Fδ) ≤ 2(1− pn)b+Q(S0)
[

a−
1− p2

2p2
(b− a)

]

+Q(S1)
[

a−
1− p

2p
(b− a)

]

+Q(S2)
[

a−
1− p

p
(b− a)

]

≤ 2(1− pn)b+Q(S0)
[

a−
1− p2

2p2
(b− a)

]

+

+Q(S1)
[

a−
1− p

2p
(b− a)

]

+

+Q(S2)
[

a−
1− p

p
(b− a)

]

+
.

With no negative terms, the above expression together with Lemma 1 immediately yield Theorem 1.
Thus to establish Theorem 1, it suffices to prove Proposition 1.

Definition 6. For any 1 ≤ i, i′ ≤ n,
let τi,i′ be the profile t such that t1i = t2i′ = b and all other tjℓ = a;

let τi,0 be the profile t with t1i = b and all other tjℓ = a;

let τ0,i′ be the profile t with t2i′ = b and all other tjℓ = a;
let τ0,0 = (a, a)n.

Fact 4. S0 = {τ0,0}, S1 = {τi,0, τ0,i| 1 ≤ i ≤ n}.

10



Definition 7. For any t ∈ S2 and 1 ≤ i ≤ n, define τt,i as follows: let item j (j ∈ {1, 2}) be the cheap

item for t; define τt,i = t′ where t′ji = b and t′j
′

i′ = tj
′

i′ for all other (i′, j′) 6= (i, j).

Definition 8. Let S′
1 = {τi,i′ | 1 ≤ i, i′ ≤ n}. Let S′

2 = {τt,i | t ∈ S2, 1 ≤ i ≤ n}.

Fact 5. S′
1, S

′
2 are disjoint sets of profiles containing no cheap items.

From Fact 5 and the IR Conditions, we have

U ≥ U(S1) + U(S′
1) + U(S′

2). (5)

We now utilize the DIC-conditions to establish the following lemma relating the U and Q values
on different types.

Lemma 3.

U(S1) ≥
1− p

p
((b− a)Q(S0) + 2U(S0)), (6)

U(S′
1) ≥

1− p

2p
((b− a)Q(S1) + U(S1)), (7)

U(S′
2) ≥

1− p

p
((b− a)Q(S2) + U(S2)). (8)

Proof of Lemma 3. The DIC-conditions require that, for all ti, t
′
i, t−i,

ui(ti, t−i) ≥ ui(t
′
i, t−i) +

∑

j

(tji − t′
j
i )q

j
i (t

′
i, t−i).

We only need a subset of these conditions where ti > t′i. In such cases, we can use q′ji instead of qji and
write

DIC-Conditions: For all ti > t′i and any t−i,

ui(ti, t−i) ≥ ui(t
′
i, t−i) +

∑

j

(tji − t′
j
i )q

′j
i (t

′
i, t−i). (9)

To prove Eq. 6, consider ti ∈ {(b, a), (a, b)}, t
′
i = (a, a). We have

ui(τi,0) = ui((b, a), (a, a)
n−1) ≥ ui(τ0,0) + (b− a)q′

1
i (τ0,0),

and ui(τ0,i) ≥ ui(τ0,0) + (b− a)q′
2
i (τ0,0). (10)

By Fact 4 we have

U(S1) =
∑

t∈S1

Pr{t}
∑

i′

ui′(t)

= p2n−1(1− p)
∑

i

(

∑

i′

ui′(τi,0) +
∑

i′

ui′(τ0,i)
)

.
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Using Eq. 10 and the IR Conditions ui′(t) ≥ 0, we obtain

U(S1) ≥ p2n−1(1− p)
(

∑

i

ui(τi,0) +
∑

i

ui(τ0,i)
)

≥ p2n−1(1− p)
∑

i

(

2ui(τ0,0) + (b− a)q
′1
i (τ0,0) + (b− a)q

′2
i (τ0,0)

)

=
1− p

p
Pr{τ0,0}

(

2
∑

i

ui(τ0,0) + (b− a)
∑

j

∑

i

q′
j
i (τ0,0)

)

=
1− p

p
(2U(S0) + (b− a)Q(S0)).

This proves Eq. 6, the first inequality in the Lemma.

We now prove Eq. 7. Write S1 = SL
1 ∪S

R
1 where SL

1 = {τ0,i| 1 ≤ i ≤ n} and SR
1 = {τi,0| 1 ≤ i ≤ n}.

It suffices to prove for x ∈ {L,R},

U(S′
1) ≥

1− p

p
((b− a)Q(Sx

1 ) + U(Sx
1 )). (11)

We prove Eq. 11 for x = L; the case for x = R is similar.

(b− a)Q(SL
1 ) + U(SL

1 ) =
∑

t∈SL
1

Pr{t}
(

(b− a)
∑

j

∑

i

q′
j
i (t) +

∑

i

ui(t)
)

=
∑

t∈SL
1

p2n−1(1− p)
∑

i

(

(b− a)q′
1
i (t) + ui(t)

)

= p2n−1(1− p)
∑

i′

∑

i

(

(b− a)q′
1
i (τ0,i′) + ui(τ0,i′)

)

. (12)

Now consider the DIC-Conditions (Eq. 9) for (ti, t−i) = τi,i′ and (t′i, t−i) = τ0,i′ , which gives

ui(τi,i′) ≥ ui(τ0,i′) + (b− a)q
′1
i (τ0,i′). (13)

From Eqs. 12 and 13, we obtain

(b− a)Q(SL
1 ) + U(SL

1 ) ≤ p2n−1(1− p)
∑

i

∑

i′

ui(τi,i′)

≤
p

1− p

∑

i

∑

i′

Pr{τi,i′}
∑

i′′

ui′′(τi,i′)

=
p

1− p

∑

t∈S′

1

Pr{t}
∑

i

ui(t)

=
p

1− p
U(S′

1).

This proves Eq. 11, thus completing the proof of Eq. 7.

We now prove Eq. 8, the third inequality of Lemma 3. By definition

(b− a)Q(S2) + U(S2) =
∑

t∈S2

Pr{t}((b − a)
∑

i,j

q′
j
i (t) +

∑

i

ui(t)). (14)
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Now observe that the DIC-Condition Eq. 9 for τt,i ∈ S′
2 and t ∈ S2 implies2

ui(τt,i) ≥ ui(t) + (b− a)
∑

j

q′
j
i (t) (15)

From Eq. 14 and 15, we obtain

(b− a)Q(S2) + U(S2) ≤
∑

t∈S2

Pr{t}
∑

i

ui(τt,i)

=
p

1− p

∑

t∈S2

∑

i

Pr{τt,i}ui(τt,i)

≤
p

1− p

∑

t∈S′

2

Pr{t}
∑

i′′

ui(t)

=
p

1− p
U(S′

2).

This proves Eq. 8. We have completed the proof of the Lemma 3.

Proposition 1 can be straightforwardly derived from Lemma 3, Eq. 5, and the IR conditions
U(S0), U(S2) ≥ 0. This completes the proof of Proposition 1 and hence Theorem 1.

4.2 Realizing DIC Revenue

We turn to the proof of Theorem 2. We need to prove two statements.

Statement 1. MD,δ is IR and DIC;

Statement 2. MD,δ(Fδ) = rD(δ).

The proof of Statement 1 is given in the Appendix. For the rest of this subsection, we prove
Statement 2. Here is the top level view of the proof. To show that the upper bound on revenue from
Theorem 1 can be achieved, we demonstrate that several critical inequalities involved in the upper
bound proof can be replaced by equalities. First, for mechanism MD,δ, it can be verified that Eqs. 3,
4 now are equalities, while Eq. 2 is replaced by Q(S0) = 2αp0, Q(S1) = βp1, Q(S2) = γp2. Combining
these equalities gives us MD,δ(Fδ) = rD(δ). We now give the details.

Fact 6. ui(t) = 0 for all t 6∈ S1 ∪ S′
1 ∪ S′

2 and all i. Thus, U = U(S1) + U(S′
1) + U(S′

2).

Proof. From Eq. 1, we know that ui(t) 6= 0 may occur only when t = (ti, t−i) and one of the following
is valid: (a) t−i = (a, a)n−1 and ti 6= (a, a); (b) t−i is 1-cheap and ti = (b, b). In case (a) we have
t ∈ S1 ∪ S′

1, and in case (b) we have t ∈ S′
2.

Fact 7.

∑

i,j

q′
j
i (t) =











2α if t ∈ S0

β if t ∈ S1

γ if t ∈ S2

(16)

2If j is the cheap item in t, then ui(τt,i) ≥ ui(t) + (b − a)q′
j

i (t). However, q′
j

i (t) =
∑

j′
q′

j′

i (t) in this case, since

q′
j′

i (t) = 0 for j′ 6= j.

13



Proof. For the (only) profile t in S0, the allocation function of MD,δ specifies
∑

i,j q
′j
i (t) = 2 if b < v1,

and 0 otherwise. Similarly, for any profile t ∈ S1,
∑

i,j q
′j
i (t) = 1 if b < v3, and 0 otherwise; and for any

profile t ∈ S2,
∑

i,j q
′j
i (t) = 1 if b < v2, and 0 otherwise. This is exactly the assertion of Fact 7.

Lemma 1’.

Q(S0) = 2p0α,Q(S1) = p1β,Q(S2) = p2γ. (17)

Proof. Follows immediately from Fact 3 and 7.

Lemma 2’.

MD,δ(Fδ) = 2(1− pn)b+ a
∑

0≤ℓ≤2

Q(Sℓ)− (U(S1) + U(S′
1) + U(S′

2)).

Proof. As under MD,δ all the non-cheap items are allocated in full, the Basic Formula achieves equality,
i.e. MD,δ(Fδ) = 2(1− pn)b+Qa−U . Also from Fact 2 we have Q = Q(S0)+Q(S1)+Q(S2), and from
Fact 6 we have U = U(S1) + U(S′

1) + U(S′
2). Lemma 2’ follows.

Lemma 3’.

U(S1) = (b− a)
1− p

p
Q(S0), (18)

U(S′
1) = (b− a)

1

2
((
1− p

p
)2Q(S0) + (

1− p

p
)Q(S1)), (19)

U(S′
2) = (b− a)

1− p

p
Q(S2). (20)

Proof. To prove Eq. 18, note that using MD,δ’s utility definition in Eq. 1 we have

U(S1) =
∑

t∈S1

Pr{t}
∑

i

ui(t)

=
∑

t∈S1

Pr{t}
α

n
(b− a)

= |S1|p
2n−1(1− p)

α

n
(b− a)

= 2np2n−1(1− p)
α

n
(b− a)

= (b− a)
1− p

p
Q(S0),

where we used Lemma 1’ and Fact 3 in the last step. This proves Eq. 18.

To prove Eq. 19, note that for any τi,i′ ∈ S′
1, Eq. 1 implies

∑

i′′ ui′′(τi,i′) = (α
n
+ β)(b− a) if i = i′,

and 0 otherwise. Thus we have

U(S′
1) =

∑

t∈S′

1

Pr{t}
∑

i′′

ui′′(t)

=
∑

i,i′

Pr{τi,i′}
∑

i′′

ui′′(τi,i′)

=
∑

i

Pr{τi,i}(
α

n
+ β)(b− a)

= p2n−2(1− p)2(α+ nβ)(b− a).
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Making use of Lemma 1’ and Fact 3, we obtain Eq. 19.

To prove Eq. 20, note that for any t ∈ S2, 1 ≤ i, i′ ≤ n we have from Eq. 1

ui′(τt,i) =

{

γ
|I(t)| (b− a) if i′ = i ∈ I(t)

0 otherwise.
(21)

It follows that

U(S′
2) =

∑

t′∈S′

2

Pr{t′}
∑

i′

ui′(t
′)

=
∑

t∈S2

∑

i

1− p

p
Pr{t}

∑

i′

ui′(τt,i)

=
1− p

p

∑

t∈S2

Pr{t}
∑

i∈I(t)

γ

|I(t)|
(b− a)

=
1− p

p
γ(b− a)

∑

t∈S2

Pr{t}

= (b− a)
1− p

p
Q(S2), (22)

where we used Lemma 1’ and Fact 3 in the last step. This proves Eq. 20. We have finished the proof
of Lemma 3’.

From Lemma 2’ and 3’, we have

MD,δ(Fδ) = 2(1− pn)b+Q(S0)
(

a− (
1− p

p
+

(1− p)2

2p2
)(b− a)

)

+Q(S1)
(

a−
1− p

2p
(b− a)

)

+Q(S2)
(

a−
1− p

p
(b− a)

)

.

Use Lemma 1’ and simplify the above equation, we obtain

MD,δ(Fδ) = rD(δ).

This proves Statement 2, and completes the proof of Theorem 2.

5 BIC Maximum Revenue

In this section we give a proof of the Main Theorem for the Bayesian implementation:

Theorem 3. Any BIR-BIC mechanisms M must satisfy M(Fδ) ≤ rB(δ).

Theorem 4 MB,δ is IR-BIC, and MB,δ(Fδ) = rB(δ).

The proofs of Theorem 3 and 4 follows the same top-level outline as the proof of Theorem 1 and
2. Lemma 1 and 2 proved in Section 4 are valid for any mechanism M , and will also be the starting
point for the BIC proof.
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5.1 Upper Bound to BIC Revenue

We prove Theorem 3 in this subsection. The key is to prove the following proposition.

Proposition 2. Any BIR-BIC mechanism M must satisfy the following inequality:

U ≥ (b− a)
(1− p2

2p2
Q(S0) +

1− p

2p
(Q(S1) +Q(S2))

)

.

Theorem 3 can be derived from Lemma 1, 2 and Proposition 2 in exactly the same way as Theorem
1’s derviation from Lemma 1, 2 and Proposition 1, and will not be repeated here. It remains to prove
Proposition 2.

We use a subset of the BIR-BIC Conditions in our proof; these conditions are listed below for easy
reference.

(a) BIR Condition: For each i,

ūi(ti) ≥ 0 where ti = (a, a). (23)

(b) BIC Condition: For each i,

ūi(b, a) ≥ ūi(a, a) + (b− a)q̄′
1
i (a, a). (24)

ūi(a, b) ≥ ūi(a, a) + (b− a)q̄′
2
i (a, a). (25)

ūi(b, b) ≥ ūi(a, b) + (b− a)q̄′
1
i (a, b). (26)

ūi(b, b) ≥ ūi(b, a) + (b− a)q̄′
2
i (b, a). (27)

The plan is to use Eqs. 23-27 to obtain a lower bound on U in terms of Q(S0), Q(S1) and Q(S2).

Lemma 4. For each i,

ūi(b, a) + ūi(a, b) ≥ (b− a)
∑

j

q̄′
j
i (a, a).

Proof. Immediate from Eqs. 23-25.

Lemma 5. For each i,

ūi(b, b) ≥
1

2
(b− a)

∑

j

q̄′
j
i (a, a)

+
1

2
(b− a)

∑

j

(

q̄′
j
i (a, b) + q̄′

j
i (b, a)

)

.

Proof. Adding up Eqs. 26 and 27, we obtain

ūi(b, b) ≥
1

2

(

ūi(b, a) + ūi(b, a)
)

+
1

2
(b− a)

∑

j

(

q̄′
j
i (a, b) + q̄′

j
i (b, a)

)

, (28)
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where we have used the fact that q′2i ((a, b), t−i) = q′1i ((b, a), t−i) = 0 for all t−i. Lemma 5 now follows
by using Lemma 4 on Eq. 28.

We now express U as a convex combination of the left-hand sides of Eq 23, Lemma 4 and 5, and
obtain a lower bound in terms of Q(Sℓ):

U =
∑

i

∑

t

Pr{t}ui(t)

= p2
∑

i

ūi(a, a)

+ p(1− p)
∑

i

(

ūi(b, a) + ūi(a, b)
)

+ (1− p)2
∑

i

ūi(b, b)

≥ C1 + C2, (29)

where

C1 = (b− a)
(

p(1− p) +
1

2
(1− p)2

)[

∑

i

∑

t−i

Pr{t−i}
∑

j

q′
j
i ((a, a), t−i)

]

= (b− a)
1− p2

2

∑

i

∑

t−i

Pr{t−i}
∑

j

q′
j
i ((a, a), t−i), (30)

and C2 =
1

2
(b− a)(1 − p)2

∑

i

∑

t−i

Pr{t−i}
∑

j

(

q′
j
i ((a, b), t−i) + q′

j
i ((b, a), t−i)

)

. (31)

Separating out the t−i = (a, a)n−1 term in Eq. 30, we obtain

C1 = (b− a)
1− p2

2

[

∑

i

p2n−2
∑

j

q′
j
i (τ00)

+
∑

i

∑

t−i 6=(a,a)n−1

Pr{t−i}
∑

j

q′
j
i ((a, a), t−i)

]

≥ (b− a)
1− p2

2p2
Pr{τ00}

∑

i,j

q′
j
i (τ00)

+ (b− a)
1− p

2p

∑

t,i,ti=(a,a)
t−i 6=(a,a)n−1

Pr{t}
∑

j

q′
j
i (t),

C2 = (b− a)
1− p

2p

∑

t, i
ti∈{(a,b),(b,a)}

Pr{t}
∑

j

q′
j
i (t).

It follows that

C1 + C2 ≥ (b− a)
1− p2

2p2
Q(S0)

+ (b− a)
1− p

2p

∑

t6=τ00

∑

i,ti 6=(b,b)

Pr{t}
∑

j

q′
j
i (t).
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Now, noting that
∑

j q
′j
i (t) = 0 if ti = (b, b), we have

∑

t6=τ00

∑

i,ti 6=(b,b)

Pr{t}
∑

j

q′
j
i (t) =

∑

t6=τ00

Pr{t}
∑

i

∑

j

q′
j
i (t)

=
∑

t∈S1∪S2

Pr{t}
∑

i

∑

j

q′
j
i (t)

= Q(S1) +Q(S2) (32)

where we have used Fact 2.

It follows from Eqs. 30-32 that

U ≥ (b− a)
1− p2

2p2
Q(S0) + (b− a)

1− p

2p
(Q(S1) +Q(S2)).

This proves Proposition 2, and completes the proof of Theorem 3.

5.2 Realizing BIC Revenue

To prove Theorem 4, it suffices to prove the following two statements.

Statement 3. MB,δ is IR and BIC.

Statement 4. MB,δ(Fδ) = rB(δ).

The proof of Statement 3 will be given in the Appendix. The rest of this subsection is devoted to
the proof of Statement 4. The statement is clearly true if b ≥ v3 (i.e. Case 3 in the definition of MB,δ),
since in this case by definition rB(δ) = rD(δ), MB(Fδ) = MD(Fδ), and Theorem 2 has established
MD(Fδ) = rD(δ). Thus we can assume b ∈ (a, v3) (i.e. Case 1 or 2). Note that in this situation β = 1
and α ∈ {0, 1}.

The proof follows essentially the same outline as the proof of Statement 2 in Section 4.2. Fact 2, 3,
6 remain true; Fact 7, Lemma 1’, 2’ are modified to the following.

Fact 8.

∑

i,j

q′
j
i (t) =

{

2α if t ∈ S0

β if t ∈ S1 ∪ S2.

Lemma 1”.

Q(S0) = 2p0α,

Q(S1) = p1β,

Q(S2) = p2β.

Lemma 2”. MB,δ(Fδ) = 2b(1− pn) + a
∑

0≤ℓ≤2 Q(Sℓ)− (U(S1) + U(S′
1) + U(S′

2)).

All the above statements are straightforward to prove. Finally, Lemma 3’ is modified to the follow-
ing:
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Lemma 3”.

U(S1) = (b− a)
1− p

p
Q(S0), (33)

U(S′
1) = (b− a)

1

2
((
1− p

p
)2Q(S0) + (

1− p

p
)Q(S1)), (34)

U(S′
2) = (b− a)

1− p

2p
Q(S2). (35)

The proof of Eqs. 33-34 is exactly the same as in the proof of Eqs. 18-19 in Lemma 3’. The proof
of Eq. 35 is also similar to the proof of Eq. 20 in Lemma 3’, except that Eq. 21 should be replaced by

ui′(τt,i) =

{

β
2|I(t)| (b− a) if i′ = i ∈ I(t)

0 otherwise.
(36)

Proceeding as before, we obtain instead of Eq. 22,

U(S′
2) =

1− p

2p
β(b− a)

∑

t∈S2

Pr{t}

= (b− a)
1− p

2p
Q(S2).

This proves Eq. 35, and completes the proof of Lemma 3”.

It follows from Lemmas 2”, 3” that

MB,δ(Fδ) = 2(1 − pn)b+Q(S0)
(

a− (
1− p

p
+

(1− p)2

2p2
)(b− a)

)

+Q(S1)
(

a−
1− p

2p
(b− a)

)

+Q(S2)
(

a−
1− p

2p
(b− a)

)

.

Use Lemma 1′′ and simplify, we obtain

MB,δ(Fδ) = rB(δ).

This proves Statement 4, and completes the proof of Theorem 4.
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Appendix

A. Proof of Statement 1

We prove Statement 1 from Section 4.2. Without loss of generality (and making it easier to read),
we normalize the value so that a = 1 and b > 1 for Appendix A and B. (The case a = 0 is trivial, and
can easily be checked separately.)

Statement 1. MD,δ is IR and DIC.

Proof. Mechanism MD,δ is obviously IR, as the utility as defined by Eq 1 (main text) is always non-
negative. MD,δ is also clearly DIC if b ∈ [v2,∞), as MD,δ can be defined in the form of a menu for
each buyer (see Remark 4 in the main text). Therefore, in our proof, we can assume that b ∈ (1, v2)
and, in this situation, the parameters satisfy α ∈ {0, 1} and γ = β = 1.

The DIC Conditions can be written as: for all ti, t
′
i, t−i,

(ti − t′i) · qi(ti, t−i) ≥ ui(ti, t−i)− ui(t
′
i, t−i) ≥ (ti − t′i) · qi(t

′
i, t−i). (A1)

Note that Eq. (A1) is unchanged if we swap ti and t′i.

As MD,δ is symmetric in items and buyers, to show that MD,δ is DIC, it is sufficient to prove the
following subset of inequalities among (A1) for all t−1:

(0, b − 1) · q1((1, b), t−1) ≥ u1((1, b), t−1)− u1((1, 1), t−1)

≥ (0, b− 1) · q1((1, 1), t−1) (A2)

(b− 1, 0) · q1((b, b), t−1) ≥ u1((b, b), t−1)− u1((1, b), t−1)

≥ (b− 1, 0) · q1((1, b), t−1) (A3)

(b− 1, b− 1) · q1((b, b), t−1) ≥ u1((b, b), t−1)− u1((1, 1), t−1)

≥ (b− 1, b − 1) · q1((1, 1), t−1) (A4)

(b− 1,−(b− 1)) · q1((b, 1), t−1) ≥ u1((b, 1), t−1)− u1((1, b), t−1)

≥ (b− 1,−(b − 1)) · q1((1, b), t−1). (A5)

Case A. t−1 = (1n−1, 1n−1).

By the definition of MD,δ, it is easy to verify that

q1(t1, t−1) =

{

(α
n
, α
n
) if t1 = (1, 1)

(1, 1) if t1 6= (1, 1);

u1(t1, t−1) =











0 if t1 = (1, 1)

(b− 1)α
n

if t1 = (1, b) or (b, 1)

(b− 1)(α
n
+ 1) if t1 = (b, b).
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Thus, to verify A2-A5 is the same as to verify the following inequalities, which are obviously true:

b− 1 ≥ (b− 1)
α

n
≥ (b− 1)

α

n
,

b− 1 ≥ b− 1 ≥ b− 1,

2(b− 1) ≥ (b− 1)(
α

n
+ 1) ≥ (b− 1) · 2

α

n
,

0 ≥ 0 ≥ 0.

Case B. t−1 = (1n−1, bm1n−m−1), m ≥ 1.

By the definition of MD,δ, it is easy to verify that

q1(t1, t−1) =























(0, 0) if t1 = (1, 1)

( 1
1+m

, 1
1+m

) if t1 = (1, b)

(1, 0) if t1 = (b, 1)

(1, 1) if t1 = (b, b);

u1(t1, t−1) =

{

0 if t1 6= (b, b)

(b− 1) 1
1+m

if t1 = (b, b).

To verify A2-A5 is the same as to verify the following inequalities, which are obviously true:

(b− 1)
1

1 +m
≥ 0 ≥ 0,

b− 1 ≥ (b− 1)
1

1 +m
≥ (b− 1)

1

1 +m
,

2(b− 1) ≥ (b− 1)
1

1 +m
≥ 0,

b− 1 ≥ 0 ≥ 0.

Case C. t−1 = (bm1n−m−1, 1n−1), m ≥ 1.

Symmetric to Case B, we have

q1(t1, t−1) =























(0, 0) if t1 = (1, 1)

(0, 1) if t1 = (1, b)

( 1
1+m

, 1
1+m

) if t1 = (b, 1)

(1, 1) if t1 = (b, b);

u1(t1, t−1) =

{

0 if t1 6= (b, b)

(b− 1) 1
1+m

if t1 = (b, b).
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To verify A2-A5 is equivalent to verifying the following inequalities, which are obviously true:

b− 1 ≥ 0 ≥ 0,

b− 1 ≥ (b− 1)
1

1 +m
≥ 0,

2(b− 1) ≥ (b− 1)
1

1 +m
≥ 0,

0 ≥ 0 ≥ −(b− 1).

We have so far treated all the cases when t1 has at least one cheap item. We divide the rest by
whether t−1 has an i with ti = (b, b). Let ℓ(t−1) be the number of such i’s.

Case D. ℓ(t−1) = 0; t1−1 has m b’s and t2−1 has m′ b’s where m,m′ ≥ 1.

By the definition of MD,δ, it is easy to verify that

q1(t1, t−1) =























(0, 0) if t1 = (1, 1)

(0, 1
1+m′ ) if t1 = (1, b)

( 1
1+m

, 0) if t1 = (b, 1)

(1, 1) if t1 = (b, b);

u1(t1, t−1) = 0 for all t1.

To verify A2-A5 is equivalent to verifying the following inequalities, which are obviously true:

(b− 1)
1

1 +m′
≥ 0 ≥ 0,

b− 1 ≥ 0 ≥ 0,

2(b− 1) ≥ 0 ≥ 0,

(b− 1)
1

1 +m
≥ 0 ≥ −(b− 1)

1

1 +m′
.

Case E. ℓ(t−1) > 0.

By the definition of MD,δ, it is easy to verify that

q1(t1, t−1) =

{

(0, 0) if t1 6= (b, b)

( 1
1+ℓ

, 1
1+ℓ

) if t1 = (b, b);

u1(t1, t−1) = 0 for all t1.

To verify A2-A5 is equivalent to verifying the following inequalities, which are obviously true:

0 ≥ 0 ≥ 0,

(b− 1)
1

1 + ℓ
≥ 0 ≥ 0,

2(b− 1)
1

1 + ℓ
≥ 0 ≥ 0,

0 ≥ 0 ≥ 0.
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We have shown that A2-A5 hold in all cases. This completes the proof of Statement 1.

B. Proof of Statement 3

We prove Statement 3 from Section 5.2.

Statement 3. MB,δ is IR and BIC.

Proof. Again, we assume b > a = 1 without loss of generality. Mechanism MB,δ is obviously IR, as the
utility function for MB,δ is defined to be always non-negative. MB,δ is also clearly BIC (and in fact
DIC) if b ∈ [v3,∞), as in this case MB,δ = MD,δ which has been shown to be DIC in Appendix A.
Therefore, in our proof, we can assume that b ∈ (1, v3) and, in this situation, the parameters satisfy
α ∈ {0, 1} and β = 1.

The BIC Conditions can be written as: for all i, ti, t
′
i,

(ti − t′i) · q̄i(ti) ≥ ūi(ti)− ūi(t
′
i) ≥ (ti − t′i) · q̄i(t

′
i). (A6)

As MB,δ is symmetric among items and among buyers, to show that MB,δ is BIC, it is sufficient to
prove the following subset of inequalities:

(0, b − 1) · q̄1(1, b) ≥ ū1(1, b) − ū1(1, 1)

≥ (0, b− 1) · q̄1(1, 1) (A7)

(b− 1, 0) · q̄1(b, b) ≥ ū1(b, b) − ū1(1, b)

≥ (b− 1, 0) · q̄1(1, b) (A8)

(b− 1, b− 1) · q̄1(b, b) ≥ ū1(b, b) − ū1(1, 1)

≥ (b− 1, b − 1) · q̄1(1, 1) (A9)

(b− 1,−(b− 1)) · q̄1(b, 1) ≥ ū1(b, 1) − ū1(1, b)

≥ (b− 1,−(b − 1)) · q̄1(1, b). (A10)

Fact A1. q̄1(t1) ≥ q̄1(t
′
1) if t1 ≥ t′1.

Proof. The allocation function used by MB,δ is consistent with the partial order on the types. Thus, if
t1 ≥ t′1, we have q1(t1, t−1) ≥ q1(t

′
1, t−1) for any t−1. This implies q̄1(t1) ≥ q̄1(t

′
1).

Fact A2. ū1(1, b) − ū1(1, 1) = (0, b − 1) · q̄1(1, 1), and
ū1(b, b)− ū1(1, b) = (b− 1, 0) · q̄1(1, b).

Proof. As by definition u1((1, 1), t−1) = 0 for all t−1, we have ū1(1, 1) = 0. We also have, by definition
of u1 for MB,δ ,

ū1(1, b) =
∑

t−1

Pr{t−1}u1((1, b), t−1)

= p2n−2 · u1((1, b), (1, 1)
n−1)

= p2n−2 ·
α

n
(b− 1). (A11)
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As q̄1(1, 1) = p2n−2 · (α
n
, α
n
), we have proved

ū1(1, b)− ū1(1, 1) = p2n−2 ·
α

n
(b− 1) = (0, b− 1) · q̄1(1, 1).

This proves the first equation in Fact A2. We now prove the other equation in Fact A2. Let T j
1 be the

set of profiles t−1 such that tj−1 is cheap (all 1’s) while the other column has at least one b appearing in
it. For each t−1, let t̃−1 be the type obtained by switching the two columns (i.e. interchanging items
1 and 2). If t−1 ∈ T 1

1 , clearly t̃−1 ∈ T 2
1 , and vice versa. We claim the following is true:

Claim A1. For any t−1 ∈ T 1
1 ,

u1((b, b), t−1) + u1((b, b), t̃−1) = (b− 1) · q11((1, b), t−1). (A12)

From the definition of MB,δ, we have for any t−1 ∈ T 1
1 ,

u1((b, b), t−1) + u1((b, b), t̃−1) = 2 ·
1

2
(b− 1)

1

1 + |I(t−1)|
.

Note also that q11((1, v), t−1) =
1

1+|I(t−1)|
because of MB,δ ’s allocation function. Eq. A12 follows, and

the Claim A1 is proved.

Now observe that, from the definition of MB,δ ,

u1((b, b), (1, 1)
n−1) = (b− 1)(

α

n
+ 1), (A13)

u1((b, b), t−1) = 0 for all t−1 6∈ {(1, 1)
n−1} ∪ T 1

1 ∪ T 2
1 , (A14)

and q11((1, b), t−1) =

{

1 if t−1 = (1, 1)n−1

0 if t−1 6∈ {(1, 1)
n−1} ∪ T 1

1 .
(A15)

It follows from Eqs A11, A13, and A14 that

ū1(b, b)− ū1(1, b) =
∑

t−1

Pr{t−1}u1((b, b), t−1)− p2n−2α

n
(b− 1)

= Pr{(1, 1)n−1}(b− 1)(
α

n
+ 1)− p2n−2α

n
(b− 1)

+
∑

t−1∈T 1

1
∪T 2

1

Pr{t−1}u1((b, b), t−1)

= Pr{(1, 1)n−1}(b− 1) +
∑

t−1∈T 1

1

Pr{t−1}(u1((b, b), t−1) + u1((b, b), t̃−1)).

Using Claim A1 and Eq. A15, we obtain

ū1(b, b)− ū1(1, b) = (b− 1)
[

Pr{(1, 1)n−1}+
∑

t−1∈T 1

1

Pr{t−1}q
1
1((1, b), t−1)

]

= (b− 1)q̄11(1, b).

This proves Fact A2.
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From Fact A1, we have q̄1(1, b) ≥ q̄1(1, 1) and q̄1(b, b) ≥ q̄1(1, b). These inequalities and Fact A2
imply Eqs. A7 and A8. To prove A9, we observe that Eqs. A7 and A8 together with Fact A1 imply
that

(0, b − 1) · q̄1(b, b) ≥ ū1(1, b) − ū1(1, 1)

≥ (0, b− 1) · q̄1(1, 1)

(b− 1, 0) · q̄1(b, b) ≥ ū1(b, b)− ū1(1, b)

≥ (b− 1, 0) · q̄1(1, 1).

Adding up the above inequalities, we obtain Eq. A9.

It remains to prove Eq. A10. We first establish the following Fact:

Fact A3. q̄11(1, b) ≤ q̄21(1, b), q̄11(b, 1) ≥ q̄21(b, 1).

Observe that

q11((1, b), t−1) =











1 = q21((1, b), t−1) if t−1 = (1, 1)n−1

1
1+|I(t−1)|

= q21((1, b), t−1) if t−1 ∈ T 1
1

0 ≤ q21((1, b), t−1) otherwise.

This implies q̄11(1, b) ≤ q̄21(1, b). The other inequality in Fact A3 follows by symmetry. We have proved
Fact A3.

By symmetry ū1(b, 1) − ū1(1, b) = 0. Thus, to prove Eq. A10, it is equivalent to proving

(b− 1)(q̄11(b, 1)− q̄21(b, 1)) ≥ 0 ≥ (b− 1)(q̄11(1, b) − q̄21(1, b)).

But this is true by Fact A3. This proves Eq. A10, and completes the proof of Statement 3.
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